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ABSTRACT

A SYNTHESIZED METHODOLOGY FOR ELICITING EXPERT JUDGMENT FOR
ADDRESSING UNCERTAINTY IN DECISION ANALYSIS

Richard W. Moaroe
Old Dominion University, 1997
Director: Dr. Resit Unal

This dissertation describes the development, refinement, and demonstration of an
expert judgment elicitation methodology. The methodology has been developed by
synthesizing the literature across several social science and scientific fields. The foremost
consideration in the methodology development has been to incorporate elements that are
based on reasonable expectations for the buman capabilities of the user, the expert in this

case.

Many methodologies exist for eliciting assessments for uncertain events. These are
frequently elicited in probability form. This methodology differs by incorporating a
qualitative element as a beginning step for the elicitation process. The qualitative
assessment is a more reasonable way to begin the task whea compared to a subjective
probability judgment. The procedure progresses to a quantitative evaluation of the
qualitative uncertainty statement. In combination, the qualitative and quantitative
assessments serve as information elicited from the expert that is in a subsequent step to
develop a data set. The resulting data can be specified as probability distributions for use
in a Monte Carlo simulation.

A conceptual design weight estimation problem for a simplified launch vehicle
model is used as an initial test case. Additional refinements to the methodology are made
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as the result of this test case and as the result of ongoing feedback from the expert. The
refined methodology is demonstrated for 8 more complex full size launch vehicle model.

The results of the full size launch vehicle model suggest that the methodology is a
practical and useful approach for addressing uncertainty in decision analysis. As presented
here, the methodology is well-suited for a decision domain that encompasses the
conceptual design of s complex system. The generic nature of the methodology makes it
readily adaptable to other decision domains.

A follow-up evaluation is conducted utilizing multiple experts which serves asa
validation of the methodology. The results of the follow-up evaluation suggest that the
methodology is useful and that there is consistency and external validity in the definitions
and methodology features.
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Chapter I
INTRODUCTION

1.1 Conceptual Design

ab-stract, n. thought of apart from concrete realities or specific objects.
ab-strac 'tiom, n. an abstract idea or term. (Webster’s Dictionary)

Nearly 70% of a system’s life cycle cost is determined during the conceptual
design stage (Fabrycky and Blanchard 1991). This makes conceptual or preliminary
design a critically important developmental phase of the system’s life. Conceptual design
is the earliest stage of design and at this point the design domain is large and complex
(Dym 1994). Uncertainty is naturally inherent in this situation due to the number of
design choices and the complexity of design choices that can be conceived.

Conceptual design engineering (CDE) attempts to work from the abstract to the
concrete. At this phase of design, the engineers attempt to estimate actual physical
attributes of a complex system working only from somewhat abstract conceptual
information. The amount of uncertain information is significant when attempting to
bridge the gap from the abstract concept to & concrete physical design, especially for
complex systems.

Conceptual design engineering can also be thought of as the first “theory” of a
complex system. The values of design parameters that are used to develop that initial
“theory” are hypotheses™ about the design. Usually the only way to test those

hypotheses

The journal, Management Science, has been used as a model for this document’s format.
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conclusively is to build the design, either as a solid model or a prototype product. For
complex systems, testing the hypotheses does not immediately follow hypotheses
development and complexity may actually preclude testing. Further developmental
stages intercede with multiple decision mileposts along the way. The additional
developmental stages and decision points result in new hypotheses and a “new theory” of
the design. These additional stages and decision points are confounding factors and are
an indication of the complexity and uncertainty associated with conceptual design of
complex systems.

Many conceptual design problems are unique. Experts in conceptual design
engineering are extremely rare and specialized. Many conceptual design eavironments
are characterized by one-of-a-kind designs. Shipbuilding, aircraft and aerospace are
prominent industries that frequently develop one-of-a-kind products. In these
environments, each conceptual design engineer develops his/her own estimation models
to arrive at desired estimates. One engineer may place a greater emphasis on one piece
of data while a second engineer may place a greater emphasis on some other data or test
result. These models range from relatively simple models to extremely complex models.
Developing models for one-of-a-kind products with little or no historical data again
describes a decision environment that is characteristically uncertain and challenging.

How can uncertainty be incorporated in the CDE process? Why bother? Ifa
point estimate is provided by CDE and that estimate is used as 100% certain then the
likelihood of being unrealistic is great. Uncertainty should be addressed to provide a
more robust methodology for CDE. This is advocated for all CDE complex system

design problems and is a very appropriate philosophy to follow in aerospace design.
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Quinn and Walsh (1994) list “Project Design: NASA uses unrealistic schedule and
funding” at the top of their list of 42 identifiable factors that resuited in the Hubble Space
Telescope fiasco. The Hubble case and grossly underestimated resource requirements
for many aerospace projects are examples from within NASA’s decision domain that
provide strong arguments for new methodologies and for more in-depth analyses of
complex aerospace design projects.

Public policy analysis is another example of questions that frequently have little
available data. When the quality and quantity of data is lacking for such questions, the
associated uncertainties need to be assessed in some manner to aid the policy making
process (Mullin 1986). Decisions in conceptual design engineering are analogous to
policy making. Every decision becomes a policy. In conceptual design, every parameter
value estimate becomes that parameter’s value as a policy.

1.2 Research Summary

Decision makers are faced with uncertainty in many decision situations
characterized by various sources of uncertainty. Researchers have developed several
methodologies to elicit evaluations of uncertainty from decision makers in many
domains. These methods have aimed at understanding uncertainties and aiding the
decision maker to address the uncertainty in a systematic manner. Much of the research
has attempted to understand the process by which a decision maker assesses uncertainty.
This is akin to understanding the pure thought process.

Unfortunately, much of the prior research has been conducted in a laboratory
setting with subjects and decision topics that raise questions as to the generalizability of
the resulting research findings. Even more troubling is the fact that a majority of this
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laboratory research has shown poor performance for the “experts™ being studied
(Christensen-Szalanski and Beach 1984; Shanteau 1987, 1992; Mullin 1986).

Given the results of prior studies and other limitations, an expert judgment
methodology seems like a fruitful research avenue. There is ample room for
improvements and a clear need for research successes. To proceed requires careful
filtering through the laboratory research to find the heuristics and other techniques that
have been shown to be effective with naive and real experts alike. Heeding the wamings
of other researchers is also crucial. Drawing upon the positive outcomes and the
methods that led to those outcomes can allow the researcher to synthesize a useful
methodology from the expert judgment literature. This is the approach taken in this
research in an effort to address uncertainty in a particular decision making setting.

Launch vehicle conceptual design is the decision domain of interest. Launch
vehicle conceptual design characteristically involves uncertainty due to a lack of
historical data and uncertain requirements. Many estimation models in the literature
typically rely upon historical data and frequently utilize a regression model. The lack of
data makes regression analysis, risk analysis or any other traditional statistical techniques
difficult. A supplemental technique is needed to develop a data set for analysis.

This research synthesizes an expert judgment methodology from the literature in
order to elicit the expert’s judgment of uncertainty in this decision domain. The
uncertainty judgments are used by the expert in a multi-stage procedure administered via
questionnaire to obtain the data set for analysis. A detailed description is presented for
the methodology along with the rationale for each element contained in the

methodology.
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This research contributes to the expert judgment elicitation literature by
developing a new synthesized methodology. Specifically, this methodology differs from
other methodologies by incorporating a qualitative assessment as a starting point. The
methodology does not elicit preferences, probabilities or utility functions. The absence
of those types of elicitations is a significant difference from most of the methodologies in
the literature. The documentation elements of the methodology are described in detail
and serve as a model for practitioners and for future research.

In addition, this study addresses a real problem in an applied engineering setting
and utilizes an actual domain expert. Addressing an applied setting problem is a
contribution since the bulk of the literature has addressed experiments conducted in a
“laboratory” setting.

Two cases are studied utilizing the methodology. An initial study addresses a
simplified weight estimating relationship (WER) model for a launch vehicle. This
provides feedback about the methodology and led to further refinement of methodology
elements. A second example case is studied utilizing the refined methodology. This
second case is a detailed full size WER model for a launch vehicle. The data generated
for this second case is used to conduct risk analysis utilizing Monte Carlo simulation.
Outcomes, outputs and potential practical uses of simulation results are presented and
discussed.

Further statistical evaluation is performed for system parameters for the Monte
Carlo simulation procedure. The aim is to optimize the simulation procedure parameters
to assure that the simulation is efficient and effective for use as a conceptual design
analysis tool. The results of the research suggest that the methodology developed is a
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versatile technique that can be an effective tool for addressing uncertainty related to
complex system design where there is a lack of data.

A follow-up evaluation of the methodology is also conducted utilizing multiple
engineering design experts to complete an abbreviated version of the questionnaire along
with a set of benchmark questions. This serves as a final validation of the methodology.

In the following section, the literature for several pertinent topics are reviewed.
Decision making under uncertainty is s broad field that applies in this uncertain setting.
Risk analysis is a normative methodology for dealing with uncertainty and arriving at
specific representations of outcomes. Expert judgment is used in a variety of situations
when data is scarce and when uncertainty is present. Eack of these fields contribute to
the foundation of the methodology developed in this research.
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Chapter II
LITERATURE REVIEW
2.1 Decision Making Under Uncertainty

A classic definition of decisions under uncertainty is offered by Scholz (1983) as
those circumstances characterized by “incomplete information or [incomplete]
knowledge about a situation, i.e. the possible alternatives, or the probability of their
occurrence, or their outcomes, are not known by the subjects” (Scholz 1983, p. 4).
March identifies three important sources of uncertainty that face decision makers - “an
inherently unpredictable world, incomplete knowledge about the world, and incomplete
contracting with strategic actors” (March 1994, p. 36).

Since the formalization of decision analysis, uncertainty has been an important
issue that has garnered significant attention. “Decision making under uncertainty has
been dominated by a single approach - the closely related theories of expected utility and
subjective expected utility. As formulated and axiomatized by von Neumann and
Morgenstern (1944) and Savage (1954), these theories rank among the most important
in twentieth-century social science” (Einhorn and Hogarth 1986). These theories have
greatly influenced the social scientists’ characterization of decisions under uncertainty
and serve as the “foundation for prescriptive approaches to decision making (e.g. Raiffa
1968; Keeney and Raiffa 1976)” (Einhorn and Hogarth 1986).

When faced with uncertainty, decision makers can choose to ignore uncertainty
or choose to deal with uncertainty explicitly. Asmnﬁngthclattachoiceismade.
researchers have developed several methodologies to elicit evaluations of uncertainty
from decision makers in many domains. These methods have aimed at understanding
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uncertainties and aiding the decision maker to address the uncertainty in a systematic
manner. Much of the research has attempted to understand the process by which a
decision maker assesses uncertainty.

If the decision maker chooses to deal with uncertainties in some manner then
some systematic approach is needed. Researchers must aid the decision maker when
designing methodologies to address these uncertain decision situations.

Several approaches for dealing with uncertainty have been developed. One can
ignore the existence of uncertainty (Hogarth 1975; MacCrimmon and Taylor 1976) or
use one of the other approaches that have their own limitations (Hertz and Thomas
1983). Morgan and Henrion (1990) offer several arguments for addressing uncertainty
rather than ignoring it. By way of analogy, natural scientists routinely report some
estimate of error in their quantitative measures (Morgan and Henrion 1990). Typical
uncertainties in quantitative policy analysis are larger than errors or uncertainties in
natural science fields (Morgan and Henrion 1990). Based on this difference in
magnitude, “policy analysts should report their uncertainties too” (Morgan and Henrion
1990). Additional substantive arguments are that:

o Explicit treatment of uncertainty forces additional and careful thought about the
“important factors” in an analysis and “sources of disagreement in a problem.”

o Increased reliance on experts to assist decision making may leave the decision
maker confused about what experts say. Asking experts to document “the
uncertainty of their judgments” will clarify their recommendations, tell us the
basis for their recommendations and tell us if experts disagree with each other.

e Documentation of uncertainties for one problem may be useful as information
and/or serve as a methodology template for addressing future similar problems.
Careful documentation of uncertainties will give us “greater confidence that we
are using the earlier work in an appropriate way” (Morgan and Henrion 1990, p.
3).
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These are convincing arguments for including uncertainty rather than ignoring it.
The documentation and methodological arguments are particular appealing when
addressing uncertainty in an applied setting. Documentation and development of a
methodology will serve practitioners well when addressing future similar problems.

Among the variety of methods that have evolved for addressing uncertainty are
multiattribute utility theory (MAUT) (Keeney 1977), expected utility (von Neumann and
Morgenstern 1944) and subjective expected utility (SEU) (Savage 1954). One primary
drawback of these approaches is the formulation of problems in strictly economic terms.
These methods also require the choice of one alternative versus another alternative.
Another difficulty with these approaches is the need for complementary outcomes.
Some problems do not lend themselves to direct economic utility measurement and some
do not lend themselves to the expression of complementary outcomes. In general, some
decisions are not made with an objective of maximizing some utility function.

One method that begins to incorporate risk in the decision making process is the
specification of the estimates at high, medium and low values. Typically these are
specified at pessimistic, most likely and optimistic levels for the factor and the outcomes
are simple summations of the variables at the three levels (Hertz and Thomas 1983).
Hertz and Thomas (1983) believe that this is a step in the right direction but that it still
does not provide a thorough method for comparing alternatives. They advocate a
method that is used explicitly to address uncertainty in a variety of decision domains -
risk analysis (Hertz and Thomas 1983). |
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2.2 Risk Analysis

Risk is defined as “both uncertainty and the results of uncertainty” (Hertz and
Thomas 1983). In other words, “risk refers to a lack of predictability about structure,
outcomes or consequences in a decision or planning situation” (Hertz and Thomas
1983). March’s sources of uncertainty - “an inherently unpredictable world, incomplete
knowledge about the world, and incomplete contracting with strategic actors” (March
1994, p. 36)- are characteristically the sources of risk in many decision making
situations.

Risk can also be viewed as either objective or subjective. Objective risk is based
strictly on probabilities of events such as flipping a coin, rolling dice or similar acts
involving chance. In engineering design, objective risk is rarely encountered. Subjective
risk probabilities cannot be determined experimentally (Lapin 1982) since they are tied to
human judgment where further information would alter the person’s assessment.

Subjective risk is logically of interest in many conceptual design problems since
human judgment is an integral part of design parameter specification for highly uncertain
complex systems. Subjective risk is also inherent in decisions sbout technologies to be
used in complex system design. This is more typical of engineering risk situations
especially for engineering conceptual design.

Morgan and Henrion (1990) suggest that asking experts for their "best
professional judgment” is sometimes the only option when faced with a situation that has
limited data or is not fully understood. Fischhoff (1989) asserts that very little research
hasbeenconductedonthe“judgmemdpro@uinﬁskmalysis”mdpmcwdsto
extrapolate from other applied settings of expert judgment. His work offers some
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guidance and a framework for a generic risk analysis structure utilizing the elicitation of
expert knowledge but does not include an example application. Some of the previous
research on expert judgment is discussed in the following section.

2.3 Expert Judgment

Expert judgment methods utilize recognized or identifiable expert(s) in a given
domain to provide an informed judgment about some variable of interest or about some
decision criteria. The techniques are particularly effective in decision domains that are
narrow and are more effective in applied settings (Beach 1975; Ettenson, Shanteau, and
Krogstad 1987) and particularly in settings where the expert is providing judgments
about physical stimuli (Shanteau 1992; 1987).

Unfortunately, much of the research has been conducted in a laboratory setting
utilizing naive subjects or non-experts and addressing trivial or unrealistic decisions
(Mullin 1986). The setting, subjects and decision topics raise questions as to the
generalizability of the resulting research findings. The fact that the laboratory research
has shown poor performance for the “experts” being studied also raises concerns.

Christensen-Szalanski and Beach (1984) offer evidence that articles that describe
“poor” expert performance were cited six times more frequently in their ten year study
period than were articles describing “good” expert performance. This phenomenon
referred to as the “citation bias” has led to the characterization that when it comes to
human judgment, “people are no damn good™ (Edwards 1992). Of course this is a
biased interpretation of the literature and not the viewpoint of the majority of the
researchers that continue to do research in expert judgment including Edwards (1992).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

The frequently cited “poor” expert judgment literature suggests that it is a
method laden with pitfalls. Several researchers have found that people do poorly when
asked to give an expert judgment in probability form (Tversky and Kahneman 1973;
Kahneman and Tversky 1972; Morgan and Henrion 1990). Others have found that
people fare better when asked for upper and lower bounds around a midpoint than when
asked for probabilities (Spetzler and Stael von Holstein 1975; Beach 1975). Qualitative
assessments of uncertainty have also been shown as easier to elicit than are quantitative
ones (Zimmer 1983; Budescu and Wallsten 1987; Wallsten, Budescu, Rapoport, Zwick
and Forsyth 1986; Lichtenstein and Newman 1967) although agreement on the meaning
of verbal descriptions of uncertainty may be lacking in some instances (Lichtenstein and
Newman 1967).

There are also numerous biases that must be taken into consideration when
seeking an expert's judgment (Spetzler and Stael von Holstein 1975). Using a heuristic
that challenges the expert to support his/her reasoning has been helpful in overcoming
many of these biases. In the course of eliciting an expert judgment, certain heuristics
have been shown to achieve better results than others. In particular, effective heuristics
include instructional materials that guide the expert to remove additional bias. Hoch
(1984) found that judgments were noticeably influenced when experts were asked for a
reason for their judgment. By asking for reasons, the judgment is debiased (Hoch 1984;
Morgan and Henrion 1990). Mullin (1986) requests that experts describe scenarios that
may lead to adjusting their judgments. Cautioning experts about anchoring and asking
for alternative scenarios are simple steps to take that Mullin (1986) believes are useful no
matter the direction of the bias (overconfident or underconfident).
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Mental simulation is a useful heuristic but again is subject to bias (Kahneman and
Tversky 1982). Asa subject mentally simulates a situation, variables are changed in a
downhill, uphill or horizontal fashion. The most frequent bias tends to be in a downhill
direction with a low percentage of subjects selecting uphill or horizontal changes.
Mental simulation is subject to large and systematic errors due to downhill bias
(Kahneman and Tversky 1982).

Some of the expert judgment techniques that have been used extensively include
the Delphi method (Dalkey 1969; Lock 1987), the Nominal Group Technique (NGT)
(Van de Ven and Delbecq 1971; Lock 1987) and brainstorming (Lock 1987). Each of
these involves elicitation of judgments from a group of experts through questionnaires
and typically are accomplished from a distance (e.g. Delphi) or by bringing the group of
experts together in one meeting (¢.g. NGT and brainstorming).

Mullin (1986) discussed the problems that are associated with combining multiple
experts or averaging a group of experts. She suggests that combining experts’
judgments depends on how different their estimates are (Mullin 1986). If the same
models are used and the experts produce relatively consistent results then combining the
experts’ assessments may be an acceptable practice (Mullin 1986). At the other end of
the spectrum, if there is significant disagreement between experts then the analysis will
not be well-served by combining (or averaging) the experts’ judgments (Mullin 1986).
Mullin (1986) submits that the Delphi method is one approach for trying to reach group
consensus among a group of experts.

One telling observation about group techniques comes from Parente and
Anderson-Parente (1987), who suggest that the Delphi technique was never meant to be
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used as a scientific technique. Delphi was developed to elicit judgments or opinions
about topics that were not easily analyzed with normative scientific techniques (Parente
and Anderson-Parente 1987). The primary benefit of Delphi is the collection of diverse
viewpoints that is made possible by avoiding the “face-to-face format” where opinions
may be withheld or dominated by a few individuals (Parente and Anderson-Parente
1987). This commentary serves as a strong warning when considering the Delphi
technique as a means for dealing with multiple experts.

Expert calibration is often used when Bayesian methods are employed to
combine expert opinions (Mullin 1986). The analyst usually adopts an axiomatic or
modeling approach to Bayesian aggregation of probabilities (Winkler 1986; Mullin
1986). The axiomatic approich sticks to rigid rules of combination and does not
account for new information that may be obtained by any one or several of the experts
(Mullin 1986). The modeling approach treats the experts’ probabilities as information
and this information is aggregated into resulting likelihoods (Mullin 1986). This
approach is classically Bayesian with a multiplicative relationship between the prior
distribution and the likelihood function (Mullin 1986). The primary difficulty with these
techniques is the large number of subjective judgments that are required (Clemen 1986;
French 1986; Mullin 1986). These subjective shortcomings apply to the experts and to
the analyst as well. The analyst must use subjective judgment in judging suitable
calibration, informsation dependence between experts and in combining the experts’
judgments (Mullin 1986).

These techniques are ideally suited (or at least useful) for decision topics where a
large group of experts can be readily identified and where the group of experts is readily
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accessible. However, many decision topics are extremely narrow and preclude the use of
these techniques since s group of experts cannot be identified, does not exist or is not
easily accessed. The distribution of expertise is typically skewed with the greatest
expertise residing with one or two experts within a given decision domain (Augustine
1979; Turban 1992).

In these instances, when the decision domain is extremely narrow, an expert
judgment technique may be needed that utilizes the judgment of a single expert. This is
often the case for the development of expert systems (Turban 1992). One useful
guideline for determining expertise is that an “individual should not be considered an
expert unless he or she is knowledgeable at the level of detail being elicited” (Meyer and
Booker 1991, p. 85).

2.4 Expertise

Expertise is not limited to pure knowledge on a given topic, expertise
encompasses additional skills that exhibit the full range of an expert’s knowledge.
Additional abilities include explaining results, learning new things about the domain,
restructuring knowledge whea warranted, knowing the exceptions to the rules and
determining the appropriateness of one’s own expertise (Turban 1992, p. 80). These
additional characteristics separate the true expert from the non-expert. These
characteristics allow the expert to demonstrate his/her expertise by applying it in an
appropriate manner and by reformulating the knowledge or the problem in order to best
apply his/her expertise.

Another perspective of expertise concerns the substantive and normative
components of expertise. The expert’s experience and knowledge about the topic
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constitute substantive expertise (Beach 1975; Meyer and Booker 1991). The expert’s
experience and knowiedge about “the use of the response mode” constitute normative
expertise (Meyer and Booker 1991). The response mode refers to the form in which the
expert’s knowledge is elicited (e.g. probabilities, preferences, utility functions, pairwise
comparisons, etc). Thus, normative expertise refers to the expert’s knowledge of
statistical and mathematical principles that may relate directly to the form in which the
judgment is given (Meyer and Booker 1991). Using individuals with strength in neither
substantive nor normative is unwise and will likely not be very useful. Using individuals
with strength in only one of the two is an improvement but will still result in substandard
outcomes. Hogarth (1975) attributes many of the problems with expert judgment studies
to precisely these two conditions - individuals with neither normative nor substantive
expertise or individuals with expertise in only one of these categories.

Some techniques employ calibration (Cooke, Mendel and Thys 1988; Bhola,
Cooke, Blaauw and Kok 1992) as an integral element of an elicitation methodology.
This would be consistent with the above observation. That is, an expert with substantive
expertise can be trained to develop the required normative expertise to make the elicited
judgment more meaningful.

Shanteau (1992) reached some revealing conclusions in his review of the expert
judgment literature. He concluded that where poor expert performance was observed,
the situations were dynamic and generally involved human behavior. Poor performing
experts included: clinical psychologists, psychiatrists, court judges, parole officers and
personnel managers (Shanteau 1992). Good expert performance was generally
associated with static objects or things (Shanteau 1987). Dawes (1987) contrasted the
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two by noting that “human behavior is inherently less predictable than physical stimuli”
(Shanteau 1992). Examples of domain experts with competent performance included:
astronomers, livestock judges, soil judges, test pilots, physicists, mathematicians and
accountants (Shanteau 1992). Again, Hogarth (1975) would offer that these experts
exhibit both substantive and normative expertise.

Shanteau has identified five factors associated with the competence of experts:
“domain knowledge, psychological traits, cognitive skills, decision strategies, and task
characteristics” (Shanteau 1992, p. 263). Assuming the first four factors are satisfied at
an appropriate level, the task characteristics are the variable in expert judgment research
that afford the researcher some degree of control. In other words, the researcher can
design the tasks to be administered to the expert to best draw upon the subject’s
expertise. Shanteau (1992) goes on to suggest that expert performance cannot be seen
as all good or all bad. The same expert may perform well in one setting but perform
poorly in another setting. “Their competence depends on the task characteristics”
(Shanteau 1992).

These observations by Shanteau (1992) and Dawes (1987) serve to steer
researchers towards physical stimuli topics rather than behavioral stimuli topics.
Shanteau (1992) hypothesizes that “the more a task contains [physical] characteristics,
the greater the competence that should be seen in experts” (Shanteau 1992, p.261). And
the more a task contains human behavioral characteristics, “the lesser the competence
expected in experts” (Shanteau 1992, p.261). The subjective assessments in this research
are associated with a physical object - a launch vehicle. The findings that suggest that
subjective judgments of physical stimuli are more frequently competent judgments is a
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favorable indication that this is an appropriate topic to address with expert judgment. A
suitable domain expert should be sble to competently supply a meaningful subjective
judgment of uncertainty about characteristics of the physical stimuli in this research
study. In other words, the fact that the subject being analyzed in this study is a physical
design is a favorable condition for competent subjective assessments by an expert as
suggested by the work of Shanteau (1992; 1987).

Table 1 summarizes the results of the expert judgment literature study:

Table 1 S of Ju Literature

Author(s) Findings Guidance Drawn

Christensen-Szalanski and Poor performance articles cited 6 | Look for good performance

Beach, 1984 times more frequently during 10 | articles and do not fall victim to
_year period studied. the citation bias.

Hoch, 1984 Judgments influenced when Reqnstmsonsfonudgmemsas
experts asked for reasons. of methodol

Mullin, 1986 Scenarios may lead experts to Requstmasammegral
adjust their assessments. part of the methodology.

Spetzler and Stael von Holstein, | Elicitation method depends on Lower and upper bounds are

1975 the quantity and the importance | easier 10 elicit than probabilities.
to the decision.

Lichtenstein and Newman, 1967 | Consistency in most quantities Use fewer verbal phrases to
but small sumber of responses describe uncertainty in research.
that rated ambiguous phrases or
recognized phrases as
complements.

Budescu and Wallsten, 1987 Consistency in numerical Use fewer verbal phrases.
assignments to verbal phrases.

Wallsten, Budescu, Rapoport, Good monotonic consistency Supports the use of fewer verbal

Zwick and Forsyth, 1986 among subjects when using 6 phrases.
and 10 verbal phrases for

Bolger and Wright, 1992 Use percentages rather than odds | Use percentages to quantify
or probabilities and encourage verbal phrases - use existing
judges to decompose the problem | decomposition of the problem.
in their own way.

Shanteau, 1987; 1992 Poor performance associated More confidence can be
with behavioral stimuli and good | expressed in judgments of
performance associated with physical stimuli assuming
physical stimuli. appropriate tasks are designed.
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2.5 Previous Studies and Their Findings

One published study in an applied engineering setting used expert highway
engineers to evaluate their problem solving strategies (Hammond, Hamm, Grassia, and
Pearson 1987). The expert highway engineers were asked to evaluate the “roads’
aesthetics ..., predict the ... accident rate ... and estimate the roads’ carrying capacity ...”
(Hoffman, Shadbolt, Burton, and Klein 1995). Stimuli for these judgments were “slides
showing different views of roadways or a bar graph depicting a number of road
variables” (Hoffinan, et al. 1995). Their study sought to determine if different
combinations of materials and different task characteristics invoked intuitive reasoning or
analytical reasoning (e.g., slides were necessary for aesthetic judgments and invoked
intuitive rather than analytical reasoning; analytical reasoning was logically triggered by
bar graphs of road variables) (Hammond, et al. 1987; Hoffinan, et al. 1995). An
additional finding was that there was no deterioration in expert performance when
comparing intuitive and analytical reasoning (Hammond, et al. 1987; Hoffman, et al.
1995). One generalization that may be drawn from this study is that experts are likely to
use some combination of intuition and analytical techniques in the course of making an
assessment.

Mullin (1989) also did research on knowledge elicitation from engineers. Her
research utilized three groundwater engineers and three electrical engineers from the
faculty of the respective departments of Civil Engineering and Electrical and Computer
Engineering at Caregie-Mellon University. One electrical field problem and one
groundwater problem were given to the group of six “experts” and they were asked to
provide a solution. The electrical engineers served as the expert on the electrical field
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problem and the civil engineers served as novices on the same problem. The roles were
reversed for the ground water problem. The problems were realistic problems but the
research was clearly not undertaken in a8 working engineering setting and did not deal
with a problem that the engineers currently faced. One interesting result was that the
engineers developed their own model to solve each of the problems. For the engineers
that interpreted the problem correctly, the models were very similar. Erroneous
assumptions resulted in models that were different from the group and were not valid
solutions.

Pate-Comnell and Fischbeck (1994) performed a risk analysis for thermal
protection system (TPS) tiles on the space shuttle. Primary risks during reentry were
identified as debonding of tiles, loss of adjacent tiles following the first tile lost, burn-
through and failure of a critical subsystem. Tiles were assessed in two phases, first the
susceptibility of the tiles to damage from debris at liftoff was evaluated then the effect of
the damage on shuttle performance was evaluated (Pate-Cornell and Fischbeck ,1994).
Included among the assessments was the utilization of subjective probabilities (e.g. for
critical subsystem failures if a burn-through occurred) that were based on expert opinion
(Pate-Cornell and Fischbeck ,1994).

Pate-Cornell and Fischbeck’s study (1994) focused on safety issues related to just
one shuttle subsystem, the thermal protection system (TPS). The TPS consists of
different design components - protective blankets in the areas of lower heat loads
(primarily the top of the shuttle) and reinforced carbon-carbon tiles in the areas of
highest heat loads (the nose and wing edges). Tiles are silicate blocks covered with
black glazing and are approximately 8”x8"x2" in size (Pate-Cornell and Fischbeck
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,1994). They are bonded to a feit strain isolation pad (SIP) which is in turn bonded to
the shuttle’s aluminum skin. A room-temperature vulcanized (RTV) material is used as
the bonding agent (Pate-Comell and Fischbeck ,1994). Gaps are designed into the TPS
to permit system flexibility and to vent gases during liftoff and the ascent (Pate-Comnell
and Fischbeck 1994). Some small gaps are left empty while larger gaps are filled with
gap fillers. The surface must be relatively smooth to prevent unnecessary turbulence
during reentry (Pate-Comell and Fischbeck ,1994). Matching tiles and fillers is a
tedious and very critical process that requires extensive maintenance time on a periodic
schedule in between flights (Pate-Cornell and Fischbeck 1994).

The complexity and variability of the TPS subsystem design provide an excellent
example of the difficult task that faces the conceptual design engineer. The safety issues
that extend to loss of vehicle and loss of crew underscore the importance of design plans
and design decisions for this subsystem (and many others). The Pate-Comnell and
Fischbeck (1994) study determined that the TPS was highly susceptible to operating
conditions (e.g. debris damage during liftoff) and to organizational issues (e.g. lower pay
rates for tile technicians, high tumover rates for tile technicians). These issues also
highlight the types of variation that occur during construction and operation that
exacerbate the uncertainty of weight estimation and other design estimates at the
conceptual design stage. An overly ambitious weight reduction plan may be thwarted by
subsequent decisions or by assembly technicians that build the vehicle to their own
design. Estimating the weight at a higher, more conservative value will not be accepted
as realistic and will be frowned upon due to the associated increase in cost.
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From a historical viewpoint, Pate-Cornell and Fischbeck (1994) note that
probabilistic risk analysis (PRA) had not been used at NASA since the early 1960’s when
a consultant using PRA said there was a small probability of success for NASA’s mission
to the moon. The Challenger accident in January 1986 prompted NASA to reconsider
the vulnerability of the space shuttle program (Pate-Cornell and Fischbeck 1994).
Subsequently, in 1987 NASA began to again utilize PRA (Pate-Cornell and Fischbeck
1994). Ten years later there are numerous examples of PRA studies conducted at NASA
(e.g. risk of UV radiation, etc.) and several request for proposals (RFPs) on the list of
topics currently among NASA research agendas.

Other articles that address expert judgment in realistic settings that have
influenced this research are summarized in Table 2:

Table 2 Summary of QFLQ Judgment in Realistic Settings

Author(s) Research Subjects Topic/Findings

Pate-Cornell and Fischbeck, NASA directors, engineers and | Schedule for replacing critical

1994 technicians shuule'l'PSules.

Pearson. 1987 Jjudgments were comparably
accurate.

Mullin, 1989 Engineering Faculty 1 Groundwater problem and 1
electrical field problem; experts
developed their own models.

Ettenson, Shanteau and Professional Accounting Use of primary cues and

Krogstad, 1987 Auditors secondary cues - information
use.

Phelps and Shanteau, 1978 Livestock Judges Judges integrate many
dimensioas in their judgments
but intercorrelations reduce the
total number.

Beach, BH., 1978 Literature review of other studies | Use of subjective probabilities
of experts in medicine, and Bayes Theorem is
meteorology, military and potentially profitable. Much
business (stock market analysts). | more research needs to be done

in realistic settings.
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2.6 Summary

This chapter introduced some of the concepts related to decision making under
uncertainty and risk analysis. The chapter also reviewed the broader literature on expert
judgment and reviewed several published studies of expert judgment in applied or
realistic settings. Most of the methodological elements in this research have been drawn
from the literature presented in this chapter. Many of these elements can be seen in the
two summary tables included in this chapter, Table 1 and Table 2. Of particular
importance to the methodology, lower and upper bounds around the point estimate
(Spetzler and Stael von Holstein 1975), reasons (Hoch 1984), scenarios (Mullin 1986)
and the use of few verbal phrases (Wallsten, et al. 1986; Lichtenstein and Newman
1967) have been drawn from the literature presented.

The conclusion from the literature review was that no single method has been
shown to be an overwhelming favorite when working with expert judgment. Most of the
authors referenced above suggested that muitiple techniques are needed to debias
expert's assessments. In the literature, there was, however, a heavy reliance on
probabilistic assessments.

One applied engineering setting study (Hammond, et al. 1987) has more in
common with the “laboratory” studies that focus on questions using almanac type data.
The analysis was performed on existing roadways. Mullin (1989) did employ engineers
in her research but did not deal with a real world problem with the degree of complexity
that is involved with CDE. The approach taken in this research and the problem domain

being addressed appears to be unique compared to previous studies.
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Chapter II1
RESEARCH CONTEXT
3.1 Why Weight is Important
Engineers don 't think about what their [designs] weigh. The U.S.S. Latey [ship]
weighs 40,000 tons! How much does the Empire State Building weigh? If we
don 't know what it weighs, we don 't know the performance we 're getting for our

investment. ... We have to do more with less.
R Buckminster Fuller

(PBS, April 10, 1996)

Fuller (1996) advocated focusing on weight reduction in all engineering design
especially housing. His advocacy was a lifetime crusade (1895-1983) that touched a
broad spectrum of design problems and he frequently advocated the use of technologies
borrowed from the aerospace industry (e.g. the Wichita house, 1996).

Weight has received significant attention in vehicle and vessel design and has
been an issue for as long as those engineering fields have existed. The concern for
weight crosses the design domains of automobiles, sailing ships, watercraft, aircraft and
space vehicles. The emphasis on weight in aircraft design and development is reflected
in the following quotes:

“It is an analytical fact that aircraft/rotorcraft performance is even more sensitive

to weight than other important parameters such as lift-to-drag ratio and specific

fuel consumption” (Scott 1992, p.2).

“Weight was the most important development problem...[leading to a canceled

;s)r;galmgg’z)fAviaﬁon Week and Space Technology, June 17, 1991; quoted in

“More airplanes have failed due to being overweight than for any other single
cause” (Richard Gathers, aircraft designer for 51 years; quoted in Scott 1992).
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“The most important contributor to avoiding contractor-responsible weight
growth is a realistic estimate” (Robert Anderson, USAF, WPAFB responding to
questionnaire at the October 1991, SAWE Weight Growth Workshop in St.

Louis; quoted in Scott 1992).

“First and foremost, push for realistic weight estimates...” (NAVAIR response to

questionnaire at the October, 1991, SAWE Weight Growth Workshop in St.

Louis; quoted in Scott 1992).

The importance of weight was shown statistically by Gordon (1988) when using
a regression procedure to estimate aircraft cost. His resuits indicated a coefficient of
correlation (r) of 0.979 for “weight” as a predictor of “cost” (Gordon 1988). This
proved to be a slightly stronger correlation than either “area” (r=0.952) or “volume”
(r=0.927) (Gordon 1988). Weight also had the lowest percentage standard error of the
three variables, 0.5 versus 3.6 and 8.2 respectively (Gordon 1988).

From these comments and studies, weight is posited as a critical factor affecting
aircraft performance and, more importantly for this research, affecting the success of
design and development programs. The comments indicate that there is a8 history of
problems associated with weight estimates that have led to canceled design programs
and failed designs.

Aerospace conceptual design engineers frequently perform spacecraft/launch
vehicle design studies and weight optimization is used as a criteria in these studies (e.g.
Bush, Unal, Rowell and Rehder 1992; Stanley, Unal and Joyner 1992; Stanley,
Engelund, Lepsch, McMillian, Wurster, Powell, Guinta, and Unal 1993; Engelund,
Stanley, Lepsch, McMillian and Unal 1993). Weight optimization is also a criteria in
aircraft design studies (Wille 1990). From this emphasis, weight is viewed as an
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important factor that affects launch vehicle performance and possibly life cycle cost of
the launch vehicle.

At the conceptual design stage, optimization may be s lofty goal given the
amount of uncertainty involved. Because this research focuses on conceptual design, an
optimization criteria has not been adopted. The amount of uncertainty dictates that a
stochastic methodology is more appropriate than a specific optimization technique.

In addition to physical performance of the finished design there are other
significant performance measures for design and development programs in the form of
cost and schedule metrics. In launch vehicle conceptual design the latter performance
measures are primary concerns along with satisfaction of mission performance
requirements. The solution advocated in this small sample of quotes is to strive for more
realistic weight estimates. The same suggestions (i.e. realistic estimates) that apply to
aircraft CDE can apply to aerospace CDE and virtually any CDE dealing with the design
of a complex system (i.e. push for realistic estimates).

3.2 Specifics of the Domain

Weight estimating is a critical task at conceptual design for a launch vehicle.
Weight estimates are used to make management decisions in choosing among alternative
designs (e.g. lower weight may mean increased performance and in some cases lower life
cycle cost). Weight estimates are also important factors used for estimating cost.
Typically, weight estimating relationships (WERs) developed and scaled from historical
data of aircraft are used to estimate weight of the various subsystems of launch vehicles
at the conceptual design phase. Since there is’little historical data, these WERs are
highly uncertain. The risk of under- or over-estimating launch vehicle weight is a
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primary concern associated with uncertainty inherent in the WERs. When weight is
under- or over-estimated at the conceptual design phase, subsequent decisions
throughout the design and development processes are essentially biased in one direction
or the other. Weight uncertainty may lead to increased acquisition cost, schedule
overruns, performance deterioration, and increased operating costs. These potential
effects make it necessary to address weight estimsting uncertainty and consider the life
cycle consequences at conceptual design. This research develops a stochastic
methodology to incorporate weight estimating uncertainty for a launch vehicle as a
complex system at the conceptual design phase.

For conceptual design of a complex system, a primary barrier to overcome in the
estimation process is the lack of data. The following section discusses the use of expert
judgment data to overcome this barrier.

3.3 Expert Judgment Data

Morgan (1984) suggests that “point estimates are of little use unless they are
accompanied by measures of their accuracy.” Morgan’s comment is directed at the
output of a simulation but the same can be said for the inputs to simulation. A range of
estimates provides more input to the risk analysis simulation procedure than does a point
estimate (i.c. a8 point estimate cannot specify a probability distribution). Or as Kirkwood
(1997) says, “giving a single number does not provide information about how much
variation i possible in the actual number.” Kirkwood’s observation that “historical data
are often only loosely relevant to the current situation” (Kirkwood 1997) wams us that
weshouldacpeavuiaﬁonﬁomapoimmmukbasedonhiuoﬁcddm We

should never expect a point estimate to be an exact outcome for some future event. As

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Black and Wilder (1980) have suggested, good data is needed to make risk analysis
meaningful. Heeding these observations, some means is needed to provide more
information and thus more data than merely a point estimate in order to provide a robust
methodology.

Expert judgment is a common and essential element for situations similar to the
one faced at the launch vehicle weight estimating task. Morgan and Hearion (1990)
suggest that asking experts for their "best professional judgment” is sometimes the only
option when faced with a situation that has limited data or is not fully understood.
Limited data or lack of understanding preclude the use of conventional statistical
methods such as a regression of historical data points.

As a result, an expert judgment methodology is used in this research as a primary
means for obtaining upper and lower bounds and most likely values for subsystem weight
estimating relationships (WERs). These bounds become primary inputs to the stochastic
methodology developed in this research. Expert judgment comprises a major portion of
the methodology for providing the inputs. The objective is to provide a range of
estimates and their associated measures of accuracy. The data set developed through the
expert judgment elicitation is used as inputs to 8 Monte Carlo simulation procedure. The
output from the simulation becomes a range of estimates with associated measures of
accuracy or confidence percentiles.

The methodology development is described in the following chapter.
Refinements and reasons for changes are also discussed. Example cases are used to aid
refinement and to demonstrate the methodology.
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Chapter IV
METHODOLOGY SYNTHESIS
4.1 Methodology

The focus of this research is the development of a methodology to obtain a data
set that can be used to conduct a risk analysis for weight estimates. This chapter
describes the methodology, the example cases that are used to refine the methodology,
and the issues related to integrating the methodology with existing methodologies at
NASA. These are presented in a chronological or sequential fashion as they were
encountered in the course of the research.

During the initial phase of this research, a questionnaire was developed to elicit
uncertainty ratings from the expert for a set of WERs. The elements of this
questionnaire are discussed along with the resuits from a simplified example analysis.
Refinements are made to the questionnaire and to the methodology. These are discussed
along with a subsequent full size launch vehicle example.

4.1.1 Initial Proposed Methodology

An initial questionnaire was developed that included nineteen (19) subsystems for
a full launch vehicle design. This was later reduced to a simplified model utilizing only
eight (8) subsystems. This simplified model was the first attempt by the expert to utilize
the methodology and was used to evaluate the usefulness of the methodology. This also
afforded an opportunity to make changes to simplify and improve the methodology.
Some of the details of the questionnaire development are discussed in the following

section.
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4.1.1.1 Questionnaire

Based on the detailed information required to quantify WER parameter
uncertainty, a questionnaire was developed as a practical and efficient approach for
eliciting the expert’s opinion. The questionnaire incorporated multiple techniques drawn
from the literature. The elements of the questionnaire as developed initially are
described in the following steps.

An initial assessment was requested of the expert for each of the subsystem
weight estimating relationships (WERS). This assessment was provided as the Low,
Most Likely and High value for each WER. After the initial assessment, the expert was
requested to rank subsystems for uncertainty of WERS on a five-point scale with low,
moderate or high uncertainty as the three major points and two intermediate points on
the scale. This incorporated the findings of Wallsten, Budescu, Rapoport, Zwick, and
Forsyth (1986), Zimmer (1983) and Lichtenstein and Newman (1967) that qualitative
assessments are more easily obtainable than are probability assessments.

Next, the expert was asked to anchor the WER uncertainty by identifying the
most uncertain and least uncertain subsystems first and second respectively. This
allowed the expert to assess the remaining subsystems on a relative basis against these
two anchor points. This incorporated the feature suggested by the research of
Lichtenstein and Newman (1967), Budescu and Wallsten (1987) and Wallsten, et al.
(1986) that fewer verbal descriptions of uncertainty should lead to better quantitative
assessments.

After all subsystems were rated on the 5-point scale, the expert was asked to
anchor his qualitative rating by explaining his understanding of “Low”, “Moderate”, and
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“High” uncertainty. For the intermediate points, “2” was quantified as the average of the
expert’s rating of “Low” and “Moderate™. The rating, “4”, was quantified as the average
of the expert’s rating of “Moderate” and “High”. This was again accomplished via
questionnaire with a suitable range of uncertainty percentages placed along a 5-point
scale for each of the qualitative ratings.

After the uncertainty ratings were completed, the expert was asked to review the
initial WER range valuations and to consider making any adjustments. During this
second assessment, the expert used the initial assessment and the uncertainty rating as
inputs to the reevaluation. One final step asked the expert to describe any scenario that
might change the valuations that he had applied to any subsystem. This allowed the
expert to consider competing technologies, substitute materials and similar scenarios.
This served as a methodology element that debiases the judgment as suggested by Mullin
(1986).

Throughout the assessment, mental simulation was an implicit heuristic as the
expert was asked to envision different parameter values and visualize different scenarios.
The nature of technological change tended to alleviate any concem for the “downhill”
bias that Kahneman and Tversky (1982) documented. That is, technological changes
normally specify the direction of parameter changes as part of the objective to be
achieved by the technology (e.g. carbon fiber composites offer high strength, light
weight and high heat resistance). In addition, the multiple techniques employed here
have challenged the expert’s opinion as suggested by Hoch (1984), Spetzler and Stael
von Holstein (1975) and Mullin (1986) to provide multiple filters for removing any
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potential bias. Example questionnaire elements are shown in Table 3. A more detailed
example of the initial questionnaire is presented in Appendix A.

Table 3

you feel appropriate.

Features

Please provide a lower bound, a mode (most likely) and an upper bound for all
subsystems. Estimates may be provided at any level within the subsystem group that

Please rate each subsystem on a scale 1 to 5 with 1 being LOW Uncertainty and S being
HIGH uncertainty. MODERATE uncertainty would be rated 3. Which subsystem is
most uncertain? Rate that subsystem now. Which subsystem is least uncertain? Rate
that subsystem now. Use these two anchors to rate the other subsystems as HIGH,

LOW or MODERATE uncertainty relative to your first ratings.

Your understanding of high uncertainty would be associated with what confidence level?

In other words - what percent is uncertain?
20% 30% 40% 50% More

using subsystem weij

you describe.

as additional information to assist

chatymrwdlmm ModemdUppa’Bamdﬁxeadlmbwm

Please consider all subsystems one last time and describe any scenario that might add
uncertainty that you have not considered in your previous assessment.
Make any adjustments to the three point estimates that are affected by the scenario that

The simplified launch vehicle consisting of eight (8) subsystems was used as the

example case. The WERS of these subsystems were the input variables. For the

example, the expert judged the WER ranges and then the configuration and sizing

program (CONSIZ) was executed to convert those to weight estimates. Resulting data

from the questionnaire are presented in Table 4.

Table 4 Data rurnl_tm‘ from
Subsystem Pt. Est. M_m Low | Mode | High
Wing - cwing 5.0 wing constant 4.5 5.0 55
LH2 tank - ¢ 0.364 unit wt of tank (Ib/R’) 0328 |[0.364 [0.382
LO2 tank - ¢ 0.458 unit wt ofu_n_k% 0412 |0458 |0.481
Basic structure-cbdy | 2.0 unit wt of struct 1.8 2.0 22
Secondary structure | 12000 constant 9000 | 12000 | 13000
wisec
TPS - ctps 1.0 unit wt of 0.9 1.0 1.3
Propulsion - towe 69.76 t/w engine (vac), ssme-77.5 | 45 50 55

at max power
Subsystems - csub | 0.14 subsystems wt fraction 0.133 Jo.14 [o0.147
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Next, the Monte Carlo procedure is discussed and the initial resuits are shown in
the following section.
4.1.1.2 Monte Carlo Results for Simplified Example Case

Monte Carlo simulation uses random or pseudo-random numbers to sample from
specified probability distributions. The sampling in Monte Carlo is entirely random, that
is, a single sample may fall anywhere within the distribution range of the inputs. With
enough iterations (repeated sampling) the input distributions can be entirely recreated. A
sample of 1000 or more is usually sufficient to avoid clustering and fully sample the
input.

For the simplified case the Monte Carlo simulation sampled from statistical
distributions for weight rather than the statistical distributions for the WER parameters.
This was necessary at this stage with no integrated simulation within CONSIZ. The
simulation was executed on the PC-based software @Risk".

Empty Weight of the launch vehicle was the output variable of interest which was
simply the sum of the eight input variables. In the example case, the output for Empty
Weight was evaluated repeatedly using subsystem weight inputs sampled from
appropriate statistical distributions. Each input (subsystem weight or WER) was
specified as a statistical distribution (e.g. normal, beta, triangular, etc.). The results for
the output variable (Empty Weight) were presented in histogram or line graph as either a
probability density function (PDF) or cumulative distribution function (CDF). The
essential elements of Monte Carlo simulation are highlighted briefly as follows:
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1) Inputs: Each input variable was specified by a distribution (PDF) and the
output variable was specified by an equation. A normal distribution was specified by the
mean and standard deviation, a triangular distribution was specified by the minimum,
most likely and maximum values, and other distributions would be specified by
parameters particular to that distribution.

2) Sampling: A random number generstor determined the point that was
sampled from each of the eight subsystem PDFs. In this example, the output variable
(Empty Weight) was determined by summing the eight subsystem weights that were
randomly sampled for a given iteration.

3) Simulation: A simulation typically consisted of 1000 iterations, so the eight
PDFs were randomly sampled 1000 times to arrive at 1000 estimates for Empty Weight.
These 1000 points were displayed in PDF or converted by integration to a CDF
representation of Empty Weight.

4) Outputs: Outputs were probabilistic representations of the output variable -
Empty Weight. Results were presented in either histogram or line graph format and
were shown in both PDF and CDF forms. PDF showed the relative frequency of
different Empty Weight values based on the simulation procedure. The CDF allowed
interpretation of percentiles associated with a given Empty Weight much like a
confidence interval.

Two different probability distributions were assumed to make an initial
comparison. Thequesﬁonnairedauwummedtoﬁttheﬁangtﬂardisuibuﬁonanda
second heuristic assumed a normal distribution.
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Questionnaire/Triangular example. The expert’s three point estimates of each
subsystem were used as the minimum, mode and maximum values to specify the
triangular distribution parameters. The “TRIGEN" probability distribution (i.e. an option
within @Risk™) was used for this example which is a variation on the triangular
distribution. The TRIGEN distribution avoids the problem of the minimum and
maximum values having essentially a zero probability of occurrence. The uncertainty
percentages elicited in the expert questionnaire were used as probability percentiles for
the minimum and maximum values (e.g. 10% uncertainty was used to specify the
minimum as the 5% percentile and the maximum as 95% percentile for each subsystem
weight).

Point estimate example. A simple or naive heuristic using the point estimate
and assuming a normal probability distribution was compared to the questionnaire results
which utilized a triangular probability distribution. The point estimate method used the
single point estimate of weight as the mean weight for each subsystem and assumed 10%
of the mean as the standard deviation in order to specify the normal distribution
parameters (i.e. mean and standard deviation) for simulation.

Both examples were evaluated by Monte Carlo simulation with 1000 iterations
each. @RISK® personal computer software was utilized to conduct the simulation for
these examples. Example graphical outputs are presented in Figure 1 and 2 respectively.
Additional comparisons of outputs are presented in Table 5. These results were also
presented in Monroe, Lepsch and Unal (1595).
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Table § Simuiation Results for Simplified Example

Measures of Empty | Point Estimate with Questionnaire Data with
| Weight Normal Distribution TRIGEN Distribution
Minimum 164,129 138,068
Maximum 210,014 266,106
Mean 185,865 202,851
Std. Deviation 7,353 20,021
5% Percentile 173,444 170,452
10% Perc. 176,616 176,973
50% Perc. 185,994 202,378
90% Perc. 195,075 228,959
95% Perc. 197,868 236,885

This simplified example served as a demonstration that the methodology would in
fact produce results and outputs that were expected and desired. In particular, weight
estimates could be represented in PDF or CDF format with associated probabilities for
the different weight estimates. No measure of accuracy or error was possible since the
launch vehicle has not been built.

One interesting comparison for the simplified case was that the point estimate of
weight fell at the 28th percentile of the CDF that resulted from the simulation using the
triangular distribution. The comparison of the two assumed distributions found that the
triangular distribution resulted in a larger variance and standard deviation than did the
normal distribution. The triangular distribution resulted in extreme values that were a
greater distance from the mean value than did the normal distribution. These differences
were directly the result of using elicited values for the extreme values of the triangular
distribution versus a naive assumed value (+ or - 10%) for the minimum and maximum
values of the normal distribution.
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Figure 1 Simulation Results (CDF)
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Although the initial case results were encouraging, some shortcomings were
identified that led to refinements in the questionnaire and the methodology. The
following section details some of those shortcomings.

4.1.2 Methodology Drawbacks

Based on feedback from the expert participating in this research, several
drawbacks or shortcomings were recognized and addressed. The initial questionnaire
was time consuming and cumbersome. The initial three point value assessment for WER
parameters and intervening steps for uncertainty ratings followed by reassessment of the
three point values for the WER parameters was problematic. This procedure was too
long, somewhat redundant and too sequential in nature. Time was a primary metric to
avoid an elicitation procedure that might take thirty to ninety minutes per quantity
(Spetzler and Stael von Holstein 1975; Shephard and Kirkwood 1994). User friendliness
was also a primary consideration and led to the exclusion of steps that did not satisfy this
criterion.

Scenarios were a useful step for documenting alternative assessments but there
was no explicit documentation for the primary uncertainty assessments. The following
section discusses some of the refinements that were made to improve the methodology.
4.2 Methodology Refinement

Based on the feedback from the expert, several changes to the questionnaire were
deemed appropriate. The initial assessment of parameters at three levels (Low, Most
Likely and High) was dropped since this was a difficult starting point and a redundant
assessment was included later in the multiple steps as originally developed. Ranking of
the most uncertain subsystem and least uncertain subsystem was revised since the expert
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felt that this was difficult to do and provided little help for rating other subsystems on a
relative basis. This was still incorporated in an intermediate questionnaire as a way of
ranking the uncertainty of all subsystems. Ultimately, this was dropped altogether since
the expert skipped this step in the assessment of the second example case, the full size
launch vehicle model, and felt that it was not useful.

These changes resulted in the qualitative uncertainty assessment becoming the
starting point. Additional discussions led to combining elements in a format so that
uncertainty ratings and reasons could be documented simultaneously. Cues were added
as a second prompt for the expert to document as many reasons and cues as possible that
were actually influencing his ratings. The following section discusses the questionnaire
elements in more detail and highlights the literature that served as a guide for the
refinement/development.

Qualitative assessments. Qualitative assessments of uncertainties have been
shown to be easier to elicit than are probabilities. Lichtenstein and Newman (1967)
started with this premise but they devised experiments that resulted in mediocre or poor
qualitative assessments. The experiments consisted of a list of 41 different verbal
descriptions of some level of uncertainty which was administered to over 225 male
employees at System Development Corporation. The subjects assigned numerical
probabilities to the verbal phrases. The researchers found that there was a lack of
consistency for some of the verbal phrases and in particular they found that phrases that
they deemed as complements (summing to 1) were not quantified in that manner by the

subjects.
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Not discounting the value of this research, the shear magnitude of the number of
phrases on the list seemed to overwhelm the subjects. Faced with a list of 41 phrases
and with no instructions to develop complements, there should be no surprise that rather
unlikely and rather likely were not quantified as complements by the subjects.

Even among the subjects for this experiment Lichtenstein and Newman (1967)
found some level of consistency for the majority of phrases. For example, “the 124
people willing to assign a probability to this ambiguous word [i.e. rather] showed fair
agreement” and “The reliability check on the duplicated entry, ‘rather unlikely,’ showed
satisfactory stability” (Lichtenstein and Newman 1967, p. 563). The conclusion that
should be drawn from the Lichtenstein and Newman (1967) experiment is that a select
few verbal phrases should be utilized to describe uncertainty situations. By selecting
only the vital few phrases, the quantification should be more straightforward. There
should be less overlap, redundancy or duplication and there should also be no problem
with overlooked complements if they exist.

Wallsten, Budescu, Rapoport, Zwick and Forsyth (1986) provide support for the
vital few approach. Their experiments were executed with ten phrases and six phrases
respectively. These are logically much more manageable than a list of 41 verbal phrases
describing uncertain probabilities. Their experiments demonstrate good monotonic
consistency among their subjects when they are asked to express vague verbal phrases
over a probability interval (Wallsten, et al. 1986).

Wallsten, et al. (1986) suggest that in general, people prefer verbal expressions of
uncertainty over numerical expressions. Even expert forecasters are included in this
generalization (Wallsten, et al. 1986). Uncertainty assessments are really just an opinion,
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and since an opinion is imprecise by definition, numerical expressions may indicate
precision when there is none (Wallsten, et al. 1986).

Many people also feel that they have a better understanding of words than
numbers (Wallsten, et al. 1986). Probability was not formally developed until the 17th
century with the work of Reverend Bayes, while language has a much longer history
(Zimmer 1983; Wallsten, et al. 1986). Zimmer (1983) believes “that people generally
handle uncertainty by means of verbal expressions and their associated rules of
conversation, rather than by means of numbers” (Wallsten, et al. 1986).

From these observations and research findings, the elicitation procedure begins
by asking for qualitative assessments of uncertainty. Qualitative verbal descriptions are
limited to a very few (only five) to alleviate the overlapping or redundant categories that
result in interpretation problems evidenced in other research (e.g. Lichtenstein and
Newman 1967, Budescu and Wallsten 1985, Beyth-Marom 1982).

Asking an expert to evaluate a set of parameters stated in logical units (e.g.
square feet of surface area, cubic feet of volume, or percent of weight reduction) is a
complex undertaking. Asking an expert to apply probabilities of uncertainty directly to
those logical units adds complexity unnecessarily. This process is particularly complex
because each subsequent parameter is expressed in different units than the preceding one.
The elicitation process has been designed to minimize adding complexity by starting with
the qualitative assessments rather than starting with a quantitative assessment. As
Wallsten, et al., note: “ it is just when the uncertainty and the events are ill defined that
non-numerical expressions are normally used” (Wallsten, et al. 1986, p. 362).
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Reasons and Cues. The documentation of reasons and cues is important for
three primary reasons. First, the documentation of reasons is an integral part of the
methodology that forces the expert to describe the reason for the uncertainty rating.
This serves as an honesty check to assure that the uncertainty rating is based on an actual
reason rather than for some frivolous reason. Secondly, documentation serves as a
history of the expert’s thinking while providing the uncertainty ratings. Since this
methodology has been developed to address uncertainty in an applied engineering
setting, the documentation serves as a reference that will be used in future evaluations of
this same project or for similar projects. Thirdly, the documentation serves as a history
of the expert’s thinking which can be evaluated as to the types of reasons and cues that
are important to the expert. This evaluation may allow better understanding of the
expert’s assessments or may lead to further refinements to the methodology depending
on the types of reasons and cues that are given. These reasons closely parallel the
reasons for documentation suggested by Morgan and Henrion (1990). Hoch (1984) also
suggested asking for reasons as a way of debiasing expert’s judgments. This feature also
serves the purposes of making the “knowledge accessible to others™ and of helping
“users organize their own knowledge in an effective way” (Fischhoff 1989).

The final version of the questionnaire requests that the “Reasons” will be
documented simultaneously while providing the “Uncertainty” rating for each WER
design parameter. This is done in order to make the documentation while the reasons
and cues are current in the expert’s mind. Ifrqnsomwerepmvidedatsomelaterstage
in the elicitation process, the expert would have to rely on memory and attempt to recall
the thinking at the time of the uncertainty rating. By making the documentation of
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“Reasons” concurrent with the “Uncertainty” rating, the need for perfect recall is
eliminated and any error in the memory of the expert is eliminated.

“Cues” are requested by a separate prompt to encourage the expert to reflect on
the thinking process and to provide any deep-sested cues that influence the uncertainty
rating. This is done in an effort to surface any cues that reside in the depth of the
expert’s mind and have not been documented among the reasons thus far. A document
was prepared to provide an explanation and an example to the expert to assist his
understanding of cues. The document was based on an article by Ettenson, Shanteau
and Krogstad (1987). This document is presented in Appendix B.

The essence of the article is that experts tend to use primary and secondary cues
when making judgments. Through their experience with similar information, experts (i.c.
professional auditors in the article) know which information has greater value and which
information is of secondary value (Ettenson, Shanteau and Krogstad 1987).

The experiment described in the article (Ettenson, Shanteau and Krogstad 1987)
is not an ideal example for an engineering problem but it does provide an example of
why reasons and cues are important. That is to document primary and secondary cues
that are influencing the expert’s judgment. No weighting of importance is implied in this
methodology for the two classes of information, reasons and cues.

The aim of requesting “cues” is very similar to one particular aim of knowledge
engineering. That is the desire to draw upon “undocumented knowledge” - knowledge
that resides in people’s minds - and to surface “deep knowledge™ - knowledge that is
based on integrated human emotions, common sease, and intuition (Turban 1992, p.
120-122). According to Turban (1992), this type of knowledge is difficult to
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computerize. Rather than computerize this knowledge, this methodology seeks only to
elicit responses from an expert that call this type of knowledge into use. Documenting
this deep knowledge again provides a history that can be used as a reference in the
future. Although the literature from expert systems is utilized here, the methodology
that is developed is more appropriately analogous to a decision support system rather
than an expert system.

Anchoring. Research indicates that there may be some uncertainty as to the
quantitative value associated with verbal expressions of uncertainty (Lichtenstein and
Newman 1967; Budescu and Wallsten 1985; Beyth-Marom 1982). For this reason, an
anchoring step is employed to place a quantitative value on the expert’s qualitative
assessment of uncertainty. After all subsystem WERs are rated on the 5-point
uncertainty scale, the expert is asked to anchor his qualitative rating by explaining his
understanding of “Low”, “Moderate”, and “High” uncertainty. This is accomplished via
questionnaire with a suitable range of uncertainty percentages placed along a 5-point
scale (or 7-point scale) for each of the qualitative ratings. This serves as documentation
of an individual expert’s interpretation as to what “Low”, “Moderate” and “High”
uncertainty really mean on the quantitative scale. If the methodology were used for
multiple experts this would serve as a check for disagreement among the group of
experts. An additional step for reconciling differences might be needed in the event of
using multiple experts. That discussion is beyond the scope of this research.

Anchoring and adjustment is a heuristic that is often cited in the literature and
that was specifically studied by Kahneman and Tversky (1973). When experts use this
heuristic, this commonly results in a bias towards the anchor (or a central tendency bias)
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because adjustments away from the anchor are inadequate (Morgan and Henrion 1990).
This has also been used as an explanation for overconfidence when continuous
probability distributions are assessed (Morgan and Henrion 1990).

Anchoring in this instance is viewed as a positive methodology element and may
actually alleviate the potential of an anchor bias or central bias. The quantification of
parameter values in this research follows a regular procedure that does not vary from
parameter to parameter. The anchored values for the qualitative uncertainty assessments
are used in combination with the qualitative assessments of individual WER parameters
to arrive at the quantification of the parameter value ranges. The qualitative nature of
the rating initially serves as an adjustment heuristic that will be applied according to the
same rules for all parameters that received the same rating.

A strong argument for the anchoring element can be extrapolated from the
following excerpt from Kirkwood (1997) when he quotes Merkhofer (1987):

“[In a decision analysis seminar, ] participants were individually asked to assign

probabilities to common expressions such as “very likely to occur,” “almost

certain to occur,” etc. The fact that different individuals assign very different
probabilities to the same expression demonstrates vividly the danger of using
words to communicate uncertainty. The seminar leader had just completed the
demonstration when the president of the company said, “Don’t remove that slide
yet.” He turned to one of his vice presidents and said the following: “You mean
to tell me that last week when you said the Baker account was almost certain,

you meant 60 percent to 80 percent probability? I thought you meant 99

percent! IfI'd known it was so low, I would have done things a lot differently.”

This example shows the problem associated with giot having a quantification step
for a verbal expression of uncertainty. The anchoring that is employed in the
methodology can avoid any surprises (assuming that a higher level decision maker looks

at the details). The anchoring element documents the percent of variation and becomes a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



permanent history of the quantitative values that are associated with the qualitative
ratings provided earlier. Again, documentation makes the expert’s judgment available to
others.

Quantifying Parameter Value Ranges. Once the expert has placed a
quantitative value on the qualitative assessment of uncertainty - in other words,
quantified “Low”, “Moderate” and “High” uncertainty - that quantitative value is used as
the total variance from the original point estimate for each WER parameter. The expert
provided feedback indicating that he interpreted the uncertainty rating to mean the full
range of variance that would apply to s given parameter. Uncertainty here has been
defined (or interpreted) as the total amount of variance for a8 design parameter from an
initial design point estimate. In other words, given the nature of the WER parameters
and what they represent, what is the potential range of a specific parameter value
(assuming the variable is continuous). The expert is asked to specify the range in terms
of a total percentage (i.e. total variation or total uncertainty). For example, the quantity
of 20% would represent a total variation of -10% to +10% around the point estimate.

Based on the earlier individual parameter rating of Low, Moderate or High, the
expert would then apply the quantitative value of the appropriate uncertainty to establish
the Low and High parameter values. If a parameter was rated as having “Moderate”
uncertainty and if “Moderate™ were quantified as 20%, then the expert would calculate
Low and High values that are -10% and +10% from the point estimate respectively.

This interpretation of the uncertainty rating is not as it was intended at the
beginning of the research and in the first questionnaire. Two different frames as to how
the uncertainty rating would be used actually developed. The researcher viewed the
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uncertainty rating as the percent of uncertain area under the tails of a probability
distribution (i.e. beyond the minimum and maximum specified by the expert). The expert
saw the uncertainty as the total amount of variation (much like a standard deviation) that
the parameters might range across. Through discussions and revision of the
questionnaire, any differences in framing were reconciled to arrive at a common frame.
As described here, the expert’s viewpoint was adopted as the official interpretation of
the uncertainty rating. This was decided as were many methodological issues based on
the desire to develop a methodology that was both meaningful and useful to the user -
the expert. Forcing the expert to accept a definition that he does not find useful would
hamper the desired purpose of the research and impede methodology development.

A representative section of the final version of the questionnaire is presented in
Appendix C. The following summary is based on the final version of the questionnaire
that was developed.

4.3 Summary of Final Questionnaire

The questionnaire has evolved through several iterations with ample feedback
from the expert as to the usefuiness of each element included in the questionnaire. The
features of the questionnaire have also been selected to optimize the task characteristics
of the elicitation process as advocated by Shanteau (1992). The multiple phases of the
questionnaire consist of:

i.) Select the Parameters from WERs that will be evaluated for uncertainty.
ii.) Rate the parameter for uncertainty on a five point qualitative scale (Low, 2, Mod,, 4,
or High). |
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ili.) Document the reason(s) for the uncertainty for each parameter that is rated.

iv.) The expert is prompted to think of any additional cues that may further document
v.) The expert is asked to anchor the three major points along the five point scale
quantitatively. This documents the meaning of Low, Moderate and High uncertainty
from the expert’s perspective. These quantitative assessments are ultimately used as an
estimate of the standard deviation for the statistical distribution.

vi.) Provide parameter values at three levels - Minimum, Most Likely and Maximum
(the uncertainty rating and the quantitative anchor of uncertainty are used to aid this
process).

vii.) Describe any scenario that would change a subsystem/parameter rating and also
provide the changes that would result if that scenario occurred.

These questionnaire elements have also been designed with the idea of
developing this into a computer-based assessment tool. Automation of the assessment
process through computerization has been underway by a programmer at NASA Langley
Research Center (LaRC).

The large number of parameters involved in launch vehicle design makes it very
time consuming to evaluate every parameter. Selecting only those parameters that are
most subject to uncertainty reduces the overall assessment task to a8 more manageable
problem. When a given parameter is selected for evaluation, all information associated
with that parameter is documented simultaneously. This allows the expert to focus on
that parameter and record all the pertinent information while the reasons and cues are
drawn upon to perform the uncertainty rating. The documentation of reasons and cues
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occurs when the assessment occurs and the expert’s thinking is focused and fresh in his
mind. Reasons and cues are the deep-seated knowledge in the expert’s mind.
Documenting these is an important means of sharing this knowledge that otherwise
resides only with the expert. Cues in other research have been stimuli selected by the
researcher to trigger a response by the subject. In this instance the cue is simply a
stimulus that the expert acknowledges as being used in the process and that the expert
documents in the process.

The procedure ultimately seeks to quantify risk and begins with a qualitative
assessment by the expert for each of the subsystem WER parameters. The expert selects
only those parameters within each WER that warrant an uncertainty rating. The expert is
requested to rate subsystem WER parameters for uncertainty on a five-point scale with
three points labeled low, moderate or high uncertainty (with two intermediate points
between the three anchors). This incorporates the findings of Lichtenstein and Newman
(1967), Wallsten, et al. (1986) and is empirically supported by Zimmer (1983) that
qualitative assessments are more easily obtainable than are probability assessments. Next,
the expert documents reasons for the uncertainty rating. The expert is then prompted to
document any additional cues that may have influenced the uncertainty rating.

As s means of quantifying the qualitative ratings, the expert is asked to anchor
Low, Moderate and High uncertainty as a percentage. The expert participating in this
research reported that he spent a great deal of time thinking sbout what this meant. His
inter-pretation was that “uncertainty” meant the total amount of variation that might be
assoc-iated with a given parameter. Next, an assessment is given in the form of three
point estimates. This incorporates the findings of Spetzler and Stael von Holstein (1975)
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and Beach (1975) that lower and upper bounds around a point estimate are easier to
obtain than probabilities. This also heeds the advice from another source: “ using a
single number to represent an uncertain quantity mixes up judgments about uncertainties
with assessments of the desirability of various outcomes. ... giving a single number does
not provide information about how much variation is possible in the actual number”
(Kirkwood 1997, p. 112).

Given the expert’s interpretation of uncertainty as the total variation, the
qualitative and quantitative ratings for a given parameter can be used to arrive at the
Minimum and Maximum parameter values when the Most Likely value is known (from
the design point estimate). One final step asks the expert to describe any scenario that
might change the valuations that he has applied to any subsystem. This allows the expert
to consider competing technologies, substitute materials and similar alternative scenarios.

Despite a seeming consensus that probabilities are difficult to elicit, many
methodologies are based on exactly that approach (Mullin 1986; Shephard and
Kirkwood 1994; Shephard 1990). Still other methods are based on eliciting five-point
estimates at specified percentiles of a probability distribution (Spetzler and Stael von
Holstein 1975). Both probabilities and multiple point percentiles add complexity to the
elicitation process particularly for a large complex problem. The methodology elements
embodied in this questionnaire have been established at the simplest possible level in
order to minimize the complexity. These choices have been guided by the literature and
by the input from the ultimate user - the expert. Otherwise the elicitation would become
an impossible task and would result in a methodology that is not very useful (and likely

would not be used).
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The methodology also passes the clairvoyant test much more readily than if the
methodology asked for probabilities. The clairvoyant test is a simple test to assure that
questions are stated in an unambiguous manner (Morgan and Henrion 1990). Asa
simple example, which is more understandable?

Assuming a subject has a S-year old son:

“What is the probability that your 5-year old son will be 5-feet tall on his 12th

birthday?”

“What range of height around S-feet do you think your son’s height might vary

within on his 12th birthday?”

Most will agree that the latter question is clearer, less ambiguous and easier to
answer with some thought. This is comparable to the formulation of the questionnaire’s
approach in the methodology developed here.

For example, the two following questions could have been used in this
methodology.

For the subject vehicle - single stage vehicle (ssv) dual-fuel, rd-701, 30 feet
payload bay, 25 kib. payload-51.6 inc.:

“What is the probability of achieving a 0.30 (30%) weight reduction factor in
the Avionics Cabling weight when eqmpared to the Avionic Cable Weight of

the space shuttle by using fiber optics?”

“What is the uncertainty associated with the point estimate of a 0.30 (30%)
weight reduction factor in the the Avionics Cabling weight when compared to
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the Avionic Cable weight of the space shuttle by using fiber optics? In other
words, how much variation due to uncertainty should be included in the
estimate of this factor? What is the range for this factor (Low, Most Likely,
and High)?”

The first question is matter-of-fact and offers no guidance and no additional
information. The multiple set of questions guides, clarifies and informs in order to elicit
the information from the expert. These types of questions are implicit within the
questionnaire and are not stated explicitly.

After refining the methodology, the revised questionnaire was administered to the
expert to obtain a data set for a full size launch vehicle model. Resuits from the full size
launch vehicle model are discussed in the following section.

4.4 Full Size Launch Vehicle Model

A full size launch vehicle design study was conducted using the refined
methodology. The launch vehicle conceptual design data consisted of 70 WERs and 399
different WER elements. For the example studied, the uncertainty analysis focuses only
on the most uncertain parameters or at least the uncertainty parameters deemed worthy
of evaluation by the expert.

In this case, the expert selected 100 parameters to rate for uncertainty. Of these,
7 were rated HIGH for uncertainty, 23 were rated 4 (between Moderate and High), 39
were rated MODERATE, 22 were rated 2 (between Low and Moderate), and 9 were
rated LOW. The remaining 299 WER elements were not assigned an uncertainty rating.
These elements will be held constant during the simulation procedure. Those parameters
with an uncertainty rating will be represented by a statistical distribution during the
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simulation procedure. Table 6 summarizes the results of the expert’s uncertainty
assessments. Actual uncertainty ratings and reasons that the expert provided are shown
in Appendix C.

Table 6 Summary of Questionnaire Results
Total WERs Evaluated 70

Total WER elements 399
Total WER parameters rated for uncertainty | 100

Questionnaire Results. At this stage, when the expert has completed the
questionnaire and calculated the three levels for parameter values, the data set for
simulation has been completed. All that remains is to encode the data set in a suitably
formatted UNIX file that can be accessed to perform the Monte Carlo simulation. One
primary problem that had to be dealt with at this point was the nomenclature that had
been used in naming variables for CONSIZ. Since CONSIZ looked at individual WERs
the variable name “c” had been used repeatedly. Unique variable names were needed in
the development of the all encompassing model that was needed for the Monte Carlo
simulation. The minute details of file development are not presented here.

The data that was developed as a result of the questionnaire is presented in Table
7 in Appendix D. Developing this data set was a major aim of this research in order to
facilitate the execution of the risk analysis.

One interesting note was that the expert recorded the following note for the
omstnks isp parameter: “extra low uncertainty, 2% (could use skewness here)”
(documented in footnotes for Table 7). This type of information might not be obtained if
a normal distribution was assumed and some simple algorithm was used to establish the
standard deviation for the normal distribution. This also exhibits the flexibility of the
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methodology to allow for these types of adjustments in the rating procedure without
much difficuity.

Another interesting result in the data was that the expert overruled the point
estimate for all point estimates that are italicized and bold in Table 7. He then provided
a range of three estimstes that excluded the point estimate entirely. Proceeding through
the elicitation methodology that requires some thought and documentation results in this
type of information being obtained. Other naive assumptions might result in less
rigorous evaluation and might fail to obtain data of this kind.

Once the full data set was obtained, the inputs for Monte Carlo were established
using the triangular distribution. Results from the Monte Carlo simulation for the full
size launch vehicle design are presented in Table 8.
Table 8 Simulation Relnlts

Estimates Normal Distr. Triangular Distr.
Minimum Empty Weight 170,623 167,129
Maximum Empty Weight 238,017 244,769
Mean Empty Weight 199,036 199,676
Std. Dev. 9.379 11,564
Mode 197,926 198,263

4.5 Integration with computerized launch vehicle design and analysis tools

NASA Langley Research Center Vehicle Analysis Branch (VAB) utilizes a
variety of computer based design analysis tools to examine Earth-to-orbit vehicle options
to replace or complement the current Space Transportation System (Freeman, Wilhite,
and Talay 1991; Stone and Piland 1992; Unal, Stanley, Engelund, and Lepsch 1994).
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Weights and sizing analysis, is performed using the NASA-developed Configuration
Sizing (CONSIZ) weights/sizing package. CONSIZ provides the capability of sizing
and estimating weights for a variety of acrospace vehicles using WERs based on
historical regression, finite element analysis, and technology level.

4.5.1 Weight Analysis Tool: CONSIZ

One initial objective of this research was to integrate risk analysis with the
existing conceptual design evaluation programs currently in use at VAB. CONSIZ is a
program that is currently used to evaluate vehicle configuration, size and weight
(Lepsch, Stanley, Cruz and Morris 1991). Typical CONSIZ estimating models include
all the interdependencies between subsystems so that changes that alter one subsystem
are reflected by changes in other interdependent subsystems. This assures that the
conceptual design satisfies all mission specifications (e.g. payload, orbit, etc.) and that
the outputs represent a feasible launch vehicle. The output from CONSIZ usually is a
single point weight estimate for a given launch vehicle configuration.

The risk analysis methodology and the Monte Carlo subroutine developed in this
research must interface directly with CONSIZ. When Monte Carlo simulation iterations
are performed, CONSIZ computes the corresponding vehicle size and weights for each
iteration. The final output is a probability distribution of expected launch vehicle weight
(Gross Weight and Empty Weight) determined through the CONSIZ WERs

incorporating uncertainty.
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4.5.2 Monte Carlo - CONSIZ Integration
For the random number generator subroutine developed in FORTRAN for the

Monte Carlo-CONSIZ integration the triangular distribution was reduced to two linear
equation components.

b~-a
c-a

If s then,x = a + Ju(c—aXb-a)

b-a

then,x = c - \J(1-u)c-a)c-b)
c-a

If u2

Where u is the uniform random variate generated and @ = minimum, b =most
likely, and ¢ = maximum values for x of f{x) for the triangular distribution. The ratio,

b4 sintsins any skewness that has been included in the three point estimates of

c—-a

WERs. This was verified by plotting simulation sampling densities for each subsystem
WER. Additional verification was performed using the Kolmogorov-Smirnov goodness-
of-fit test for the first full set of 2000 data points generated using the random number
generator. The data was converted from a UNIX format to a DOS file and all data were
evaluated using BestFit® personal computer software. Examples of the goodness-of-fit
analysis are presented in Appendix F. This analysis confirmed that each data set was
sampled from the triangular distribution.

Note that the data was used for this confirmation rather than the random numbers
since the random numbers are sampled from a uniform distribution. The FORTRAN
command “RAND” was used to generate the uniform random numbers and should not
require validation since prior validation of FORTRAN commands is assumed. The
validation of the data sets essentially validates the random number generator indirectly.
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The primary purpose of the analysis was accomplished. That is the validation of the
subroutine for triangular distribution sampling that utilizes the uniform random numbers.

In order to develop an efficient methodology, the simulation parameters need to
be specified. The next section discusses the Monte Carlo simulation system parameters
in more detail.

4.6 Monte Carlo Simulation System Parameters

To determine the most efficient and economical simulation length, simulations
were conducted for several different numbers of iterations. This analysis was conducted
using the questionnaire data for the full size launch vehicle design. Based on the resuits
of this analysis, 2000 iterations was determined to be a suitable simulation length for
efficiency and effectiveness. The analysis is discussed in more detail in Appendix E.

Law and Kelton (1991) discuss several options for selecting a probability
distribution in the absence of data. They suggest that the triangular distribution is
appropriate for situations where a “rough model in the absence of data” (Law and
Kelton 1991, p. 341) is needed. They also suggest that normal and beta distributions
might be used but specifying these is obviously more difficult in the absence of data (Law
and Kelton 1991).

Selection of a probability distribution was also evaluated as another simulation
system parameter. Triangular and normal distributions were compared. The results of
this comparison suggested that the triangular distribution did lead to a significant
difference in the mean values for the simulation procedure when compared to the normal
distribution. For equal sample sizes (n=15), Mwamdmﬁrmom
number generator (RNG) when evaluating the mean value with a p-value of
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0.000000327 (F = 46.1771 with F-critical = 4.2252). Details of this analysis are also
presented in Appendix E.

These results were as expected and intended. One reason the triangular
distribution was included in the methodology was due to its simplicity and ease of
application. An additional intent was to allow for the incorporation of skewness in the
assessments of parameter values. The specification of triangular distributions
(potentially with skewness) would lead to significantly different results than the often
assumed normal distribution. The comparison of the triangular and normal distribution
results confirm these expectations.

4.7 Outputs and Potential Uses

Potential uses of the weight risk analysis methodology are threefold - as an input
to other estimating analyses, as a means of WER refinement and as a comparative tool.
The results would provide other analysts with a range of weight estimates at a given
percentile of cumulative probability. The minimum, mean and maximum weight are also
given from the Monte Carlo results. Probability distribution parameters are also
available as an output. The probabilistic approach provides associated probabilities for
each weight in the range of weights as depicted in the CDF. This should be a more
desirable input to other estimating procedures than the single point estimate of weight
(which usually forces the estimator to assume some probability distribution for weight).

A second potential use would be in the area of WER refinement, since
information about model error is generated. This gives the weight engineer feedback on
the estimation process and measures his confidence in the estimating model. The
research has led to a better understanding of WER uncertainty and uncertainty
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quantification methods which will facilitate WER refinement. A subsequent follow-up
evaluation with a group of experts contributed in this regard as well.

Another very promising potential use would be as a comparative tool.
Competing launch vehicle designs can be evaluated through risk analysis and
probabilistic weight estimates for each design will be determined. The engineer could
compare the risk of the competing designs and cost estimators could use the outputs for
similar comparisons of cost. For example, one possible result might be that a design with
a higher mean weight may be pre-ferred due to lower risk when compared to competing
designs.

These are the practical contributions of this research. The theoretical

contributions are discussed in the following chapter.
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Chapter V
RESEARCH FINDINGS

A number of research findings were identified throughout this research. The
methodology development and some of the resulting information derived from the
methodology were the primary topics for notable findings. The following sections
discuss the research findings in more detail.
5.1 Methodology Development

The first finding was that careful selection of heuristics and guidelines from the
existing literature was necessary in order to synthesize a workable and useful
methodology. This was a fundamental observation that was recognized early in the
process to avoid many of the pitfalls associated with expert judgment research. Efforts
were made to identify and utilize heuristics and other techniques that had shown
favorable results in previous research. The specifics of this were discussed in Chapter II.

Despite the best attempts and intentions, methodology refinement was still a
necessary step in the research process. Research findings related to methodology
refinement are discussed in the following section.
5.2 Methodology Refinement

The successive revisions to the questionnaire eventually led to the final version
which asked for the documentation of reasons for the uncertainty ratings at the same
time as the uncertainty rating was made. Reasons and cues are the deep-seated
knowledge in the expert’s mind. Documenting these reasons was an important means of
sharing this knowledge that otherwise resides only with the expert. Cues in other
research have been stimuli selected by the researcher to trigger a response by the subject.
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In this instance the cue was simply a stimulus that the expert acknowledges as being used
in the process and that the expert documents in the process.

The earlier version of the questionnaire had asked for uncertainty ratings and
reasons in a sequential fashion. The final version recognized that the reasons for the
uncertainty rating were important informstion that influences the rating. This made it
logical to document the reasons at the time that the information was called upon to make
the uncertainty rating. So the uncertainty rating and the reasons were executed
simultaneously rather than sequentially. This research finding was suggested by the
expert in the study and was further developed through discussion with the primary
investigator and this researcher during a meeting on December 8, 1995.

This also highlighted another important research finding that crosses all
dimensions of the research process. The importance of user acceptance was paramount
throughout the research process. User accessibility and user feedback were essential in
order to closely monitor the process for problems and to respond to the user’s concerns.
This finding, user acceptance, was intuitively consistent with the approach commonly
adopted by software developers, knowledge base developers and decision support
system developers.

Additional concerns for responsiveness to the user were evident in the framing of
certain elements of the research program. Beach, et al. (1987) made observations
regarding framing that support the way the methodology was developed in this study.
Theymgg&edthatthewayth&theproblmgrquuﬁonhﬁnmedbythermch«in
many expert studies may in turn be framed differently by the subject (Beach, et al. 1987).
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This leads to s measurement or interpretation that does not reflect the judgment
accurately. More specifically, three types of esror are possible:
e Misframing - the researcher’s frame is correct but the subject responds to a
different frame. Even good performance to an incorrect frame results in an

e Inadequate answer-generating process - the subject frames the problem correctly
but does not know how to soive or answer the problem.

e Inadequate precision in the answer-generating process - subjects may rely upon
faulty information, there may be ‘noise’ in the process, or the problem requires
greater precision than the subject chooses to provide (Beach, et al. 1987).

They conclude by stating that “the experimenter’s frame is not necessarily the
only correct one and, because of this, it often is not clear upon what basis to evaluate the
qualityofjudgmentandreasoﬁins” (Beach, et al. 1987). In order to avoid these
potential sources of error, theéxput’sﬁ'mwasconsidered throughout the evolution of
the questionnaire and the development of the methodology. For example, there was a
situation where two different frames developed as to how the uncertainty rating would
be used. The researcher viewed the uncertainty as the percent of uncertain area under
the tails of a probability distribution (i.e., beyond the minimum and maximum specified
by the expert). The expert viewed the uncertainty as the total amount of variation (much
like a standard deviation) that the parameters might range across. Through discussions
and revision of the questionnaire, any differences in framing were reconciled to arrive at
a common frame.

Additional framing cautions can be drawn from Lichtenstein and Newman
(1967). Their research supports the use of qualitative rather than quantitative
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assessments of probabilistic events but their framing of the research might lead to
different conclusions.

In the present research, the qualitative verbal assessments were limited to only
five categories. Limiting the verbal descriptions to fewer categories and more distinct
categories made for an easier assessment than would overlapping or redundant
categories.

5.3 Demonstration of Methodology

Additional findings were related to the resulting outputs from the methodology
and also the information used within the methodology. The probabilistic nature of the
methodology required a change in mindset. This was true for the expert performing the
uncertainty ratings and it was also true for administrators that are reviewing the
outcomes from this methodology. A drastic change in perceptions was needed to move
from a point estimate of weight to a CDF or probabilistic estimate of weight.

The expected outcome from weight estimation was the prediction of the “As
built” weight at some point in the future. This expected outcome was prevalent
(expressed by the expert and expressed by VAB administration) despite the lengthy
timeframe between conceptual design and construction; despite the intervening design
decisions; despite weight growth; and despite the uncertainty associated with the WERs
themselves. This mindset did not allow for prediction of the Vehicle weight based on the
design specifications at a given point in time with revised weight estimates made as new
information becomes available or as new design decisions are made.

Ifthma:peaaﬁommtobemet,ad&iﬁonﬂmethodsmneededtoaddrssaﬂ

sources of uncertainty at conceptual design. This research has attempted to chip away at
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one segment of the uncertainty problem. Alternatively, more work is needed to
encourage the shift in mindset that would gain acceptance for probabilistic estimates.

External reviewers were equally important to the research findings associated
with the methodology demonstration. For example, an anonymous aircraft industry
engineer served as a verification “EXPERT” when he commented on the presentation of
some of these findings at the June 1996 SAWE National Conference in Atlanta, Georgia.
Notably he commented that he was “not surprised that reduction factors were rated as
the most uncertain WER elements” by the NASA expert. From his experience in the
aircraft industry, reduction factors would likely be the most uncertain elements in
virtually any aircraft/serospace WER. This served as an indication that there was
external validity in the results achieved through the methodology.

5.4 Analysis Findings

Additional findings resuited from statistical analyses that were conducted. A
series of ANOVA'’s were conducted using different levels for number of iterations,
different random number generators, and different simulation seeds.

Among factors - number of iterations, random number generator (statistical
distribution) and simulation seed - only the random number generator or statistical
sampling distribution resulted in a significant treatment effect for the analysis of variance.
This outcome was predicted a priori.

While the number of iterations did result in a treatment effect when the Maximum
and Minimum outputs were evaluated. No treatment effect was evident for any of the
hypothesis tests for no difference in the Mean values. Only the factor, Random Number
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Generator, resulted in a treatment effect when the hypothesis for no difference in the
Means was tested.

One outside reviewer offered the following advice regarding the number of
iterations: “Don’t skimp on the number of iterations™ despite what other references say
(Wilder 1996). Based on this comment, additional simulations were conducted with
10,000 and 20,000 iterations. When these results were submitted to an ANOVA, no
treatment effect was evident when comparing 20,000 to 2,000 and when comparing
20,000 to 5,000. From these results, the conclusion was that at 2,000 iterations, the
simulation had not “skimped”™ on the number of iterations. Acceptable convergence had
been achieved.

Another interesting finding dealt with the simulation results. Simulation outputs
fit the Pearson V and Pearson VI better than the Normal, Beta, Lognormal, Triangular
or any of 20 other statistical distributions evaluated. This outcome is consistent with
findings reported by Law and Kelton (1991) for a number of simulations. The
explanation for this tendency has not been attempted by others to date. Further work
may lead to fully understanding why this is the case and what the implications are.

5.5 General Findings

The methodology can be used as a template for addressing other similar problems
or entirely different problems. This is a primary research finding that applies to the
methodology in the broadest sense. By wiping the slate clean and superimposing a
different problem over the template, the methodology can be easily adapted to another
problem. The qualitative uncertainty rating, the quantification of uncertainty, the
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documentation of reasons and cues would all remain as constant features of the
methodology. All of these features are readily applicable to a wide range of problems.

The documentation elements of the methodology are also a "template” for future
problems as suggested by Morgan and Henrion (1990). In that respect, the
documentation of reasons and cues that occurs in any application of the methodology
then serves as information and/or a template for future similar problems within that

domain.
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Chapter VI
RELIABILITY AND VALIDITY
6.1 Reliability and Validity in Research

Reliability and validity are concerns in all research and both are equally important
here. Bolger and Wright (1992) suggest that more research is needed in order to
maximize reliability and validity of expert judgment. This research may be seen as
approaching that problem from a unique perspective given the circumstances with only
one expert available.

Two means of ensuring the elicitation process has little effect on validity are:

use percentages rather than odds or probabilities and encourage judges to
decompose the problem in their own way (Bolger and Wright 1992).

Meyer and Booker (1991) argue that expert judgment is valid data and
comparable to other “hard” data. “Just as the validity of hard data varies, so the validity
of expert judgment varies” (Meyer and Booker 1991, p. 21). To ensure validity, they
advocate careful selection of experts, vigilant monitoring and testing for bias, selection
of elicitation techniques with substantial literature support, and minimization of
assumptions about the expert data (Meyer and Booker 1991).

A similar viewpoint suggests that one method for ensuring validity is to utilize
assessment procedures “that are based on previously developed and proven subjective
assessment techniques” (Clemen and Winkler 1993). Selecting assessment techniques
that have been used for similarly small samples and that have been tested for validity
would be the most desirable approach. Borrowing a technique from a situation with a
dissimilar sample size or dissimilar context is not advisable.
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These are reasonable measures to be taken to ensure reliability and validity in
subjective judgment. In developing this methodology, the researcher has attempted to
adhere to as many of these suggestions as possible. Both of the latter suggestions from
Bolger and Wright (1992) have been built into the elicitation process and detailed
instructions that accompany the questionnaire related to my research proposal. All of
these suggestions have been considered when additional refinements were made to the
methodology.

Expert assessments are also improved when guided by an elicitation protocol
(Shephard and Kirkwood 1994). The protocol presented here was synthesized from a
variety of literature sources since no single source incorporated all the features deemed
appropriate to the given situation. The development of the protocol was influenced by a
wide range of research findings and numerous cautions.

The qualitative assessments are used by the expert as additional guiding
information while performing his quantitative assessment. Detailed written instructions
serve as guiding features throughout the questionnaire. These are additional measures
aimed at ensuring that the subjective assessments are reliable and useful.

The primary methodology questionnaire was planned for completion by one
NASA expert who performs weight estimation. This was necessary due to the fact that
only one expert exists within NASA.

In addition to the features designed into the methodology, additional steps were
taken to validate the methodology utilizing additional experts in the field of aerospace
design or aircraft design. Specifically, other engineers with weight estimation expertise
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were the targeted subjects. This was completed during the December 1996 to March
1997 timeframe.
6.2 Follow-up Questionnaire with Multiple Experts

An abbreviated questionnaire was developed to be administered to a group of
experts from within the broader domain of conceptual design engineering and weight
engineering in the sircraft and aerospace industries. The International President of the
Saciety of Allied Weight Engineers, Inc. (SAWE) was contacted and was asked to
submit a list names of suitable subjects from within this domain. Additional subjects
were selected from the SAWE membership roster based on their affiliation with an
aircraft/aerospace agency or company. Selected subjects were contacted by e-mail to
solicit their participation. Of nine subjects for which solicitation attempts were made,
seven were successfully reached and six agreed to participate in the group questionnaire.
The one declining stated that she had not performed any estimating tasks in several
years. An alternate from this agency (NASA Lewis Research Center) was offered but
further communication with the alternate led to his exclusion for inadequate relevant
experience.

The selected six subjects consisted of conceptual design, preliminary design or
weight engineers from Boeing, Northrup Grumman, NASA LaRC, NASA Johnson
Space Center, and two individuals from Naval Air Systems Command (NAVAIR). The
questionnaire was then mailed to these six individuals and they were asked to complete
the questionnaire based strictly on their own knowledge (no group interaction between

the six).
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6.3 Instrument

The questionnaire was developed utilizing the subsystems that had been
previously evaluated by the single NASA LaRC expert. A preliminary questionnaire was
administered to another NASA LaRC contractor (not one of the six) and some minor
changes were made prior to administering the questionnaire to the group of six experts.
The questionnaire consists of two phases - conditioning and assessment.

The conditioning phase includes a brief narrative on the background of
conceptual design for a launch vehicle and the problem of uncertainty at this design
phase. The introductory material is followed by a set of instructions and a list of
nomenclature to explain some abbreviations used in the questionnaire. Next, the group
of experts are conditioned to the task by reviewing three (3) example uncertainty ratings
along with reasons and cues that were completed by the original NASA LaRC expert.
This parallels “calibration” that is seen frequently in the expert judgment literature but in
this case the experts are conditioned to another expert’s perspective of uncertainty in a
given domain rather than being calibrated using almanac probability assessment tasks.

The second phase of the questionnaire starts with a set of instructions. The
group of experts is then asked to perform an assessment of uncertainty and provide
reasons and cues for five (5) subsystem WERs and six (6) specific parameters from those
five WERs. The parameters were specified as those that were selected by the NASA
LaRC expert when he performed his assessment. The subsystems were selected to
includetwothatwerespeciﬁctohuncbvdﬁdgdeﬁgnlndthreethatwouldhavesome
commonality with sircraft subsystems. The included subsystems were Main Propulsion,
Press and feed; Propellant tanks, Orbital maneuvering system (OMS) Tanks; Electric
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conversion and distribution, Avionic cabling; Electric conversion and distribution, Wire
trays; and Main gear, Running gear. The first two subsystems are specific to a launch
vehicle while the latter three should share some commonality with aircraft design.

Follow-up questions included general questions about the methodology and the
interpretation of uncertainty. These took the form of the following:

Would you find the methodology useful if adapted to your own analysis problem
with your own models? and Did you find the original expert’s example judgments to be
reasonable and understandable?

The questionnaire concludes with a set of Benchmark questions that are designed
similar to a conditional probability statement. For example, "Given that a WER
parameter value is based on a regression of historical data and the regression line has a
good fit to the data, what is your uncertainty rating for such a parameter?” Five of these
questions serve as benchmarks that require some knowledge of data sources and the
estimating processes at the conceptual design phase but do not require specific model
knowledge. This type of question removes the specifics of the subject launch vehicle and
looks at data and sources of data in a generic manner.

The final step is to anchor the uncertainty qualitative rating for each of the group
of experts. This serves as a direct comparison of the entire group of experts’
quantification of the different qualitative ratings of uncertainty.

The group of experts were not asked to provide parameter values at three
different levels since this is a simple application of the uncertainty qualitative rating and
the quantification applied symmetrically. The multiple experts were also likely to have
less experience with these specific parameters and were unlikely to place limitations (or
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skewness) due to theoretical limits. A complete listing of “Follow-up Questions™ and
“Benchmark Questions™ are presented in the following pages. The full version of the
follow-up questionnaire is presented in Appendix G.

6.4 Results

6.4.1 Expected Results

Given the general consensus in the literature that a group of experts may disagree
by significant amounts (Mullin 1986; Lock 1987; Parente and Anderson-Parente1987),
the expected outcome of this assessment by multiple experts is logically expected to be
wide disagreement. Particularly for the qualitative assessment and the quantitative
assessment of the qualitative rating, a wide range of interpretations is anticipated along
with a wide range of qualitative ratings and quantitative ratings. These results are
anticipated in keeping with the findings of Lichtenstein and Newman (1967), Budescu
and Wallsten (1987), and Wallsten, et al., (1986).

“Different disciplines may have different terms for the same element or may use
the same term in different ways. An inadequate modeling language may exacerbate such
problems by reducing the opportunities for analysts to discover inconsistent terminology
..." (Fischhoff 1989, p. 452). “Although it can facilitate the incorporation of diverse
perspectives, a risk assessment model can also inhibit the sort of unstructured interaction
among analysts that helps to reveal and resolve discrepancies between their respective
mental models of the system” (Fischhoff 1989, p. 453). This element of this research is
susceptible to precisely these shortcomings. Although the original mathematical models
have been provided for the group to evaluate, the meaning of individual model elements
may be viewed differently by experts within the group.
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Follow-up Questions
I. Ease of use and/or usefulness of methodology and questionnaire.
1. Comment on the ease of use of the methodology.

2. Do you find the methodology to be useful for a weight estimation analysis?

3. Would you prefer to use your own models (WERs or MERs)?

4. Would you find the methodology useful if adapted to your own analysis
problem with your own models?

II. Uncertainty

1. Did you find the original expert’s example judgments to be reasonable and
understandable?

2. Does this interpretation of uncertainty (as total variation) seem logical to you?

3. Do you have any other suggestion of how to interpret uncertainty?

4. Do you have any other method or any suggestion of how to judge uncertainty?
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Benchmark Ouestions

1. Given that a WER parameter value is based on a regression of historical data and the
regression line has a good fit to the data:
Whatlsyomuncemmtynnngformchapmer?

Rate the of that you associste with this

Low 2 Moderate 4 High

2. Given that a WER parameter value is based on someone else’s analysis or experiment
(for example a study at Marshall Space Flight Center or at Johnson Space Center, etc.):

What is your uncertainty rating for such a parameter? Explain your assumptions
about the data source if that is an important consideration to you.

Rate the of inty that you associate with this :

Low 2 Moderate 4 High

Explanation (f required):

3. Given that 8 WER parameter is a reduction factor that has been validated using actual
structures or by some other analytical techniques:

What is your uncertainty rating for such a parameter?
Rate the degree of uncertainty that you associate with this parameter:

Low 2 Moderate 4 High

4. Given that a8 WER parameter is based on a known design (such as the current space
shuttle) and the new structure is assumed to be similar:

Whet is your uncertainty rating for such a parameter?
Rate the of inty that you associate with this d

Low 2 Moderate 4 High

5. Given that the subsystem structure being analyzed is not well-defined (i.c. very early
in the conceptual design phase) and the WER parameter is estimated:
What is your uncertainty rating for such a parameter?

Rate the of inty that associate with this parameter:

Low 2 Moderate 4 High
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No allowance for nor means to interact and reach a consensus understanding of
models has been attempted or intended. Technical terms, language and even a limited
number of uncertain verbal phrases will carry a significantly different meaning for different
people including the small group of experts selected here.

The mediating factors that may produce different results (e.g. consensus
agreement) are the small number of verbal qualitative descriptions of uncertainty that are
used and the closely related fields from which the group of experts are drawn. These two
factors may lead to greater consensus or at least greater consistency in the ratings and
interpretations.

The questionnaire does require human judgment and subjective ratings. The
subjective element of the methodology makes the former expected results the more likely
results of this particular exercise.

This does not negate the usefulness of the methodology. Responses to the follow-
up questions are anticipated to be favorable. That is, a consensus is expected for
questions pertaining to the usefuiness of the methodology and for the usefulness of the
methodology if it incorporated the models of the expert in question. This reflects the
intent of the methodology as it was developed. That is, the methodology was intended as
a flexible and adaptable tool that could incorporate the models from any domain and any
particular domain expert. The methodology was not intended as a consensus seeking
technique for muitiple experts. If used by a single expert for a specific task then the
methodology is a template for ultimately developing data and for documenting the
unceﬁmntyandtlxemsonsassouatedwﬂhtheumeﬂm:tymhngs
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6.4.2 Actual Results
The following table shows the resuits from the Uncertainty Ratings for six (6)

different WER parameters from five (5) different WERs.

Table 9 Subsystem WER Parameter Qualitative Uscertainty

NASA Group TGronp Group Group
LaRC eaxpert#l | expert #2 | expert #3 | expert #4
Press and Moderate | Low 2 Notrated | Moderate
feed - cpf
OMS 2 2 2 Moderate | Low
propellant
tanks - ctnk
Avionic 4 4 4 High Low
cabling - wac
Wire Trays- | 4 Moderate | Moderate | High Moderate
wtrays
Wire Trays - | 2 Notrated | 4 Low 2
rtray
Main gear- | Moderate | High ¢ High Low
Running gear

cmrg
* The WER equation was omitted from the questionnaire. Group expert #2 developed his own
model based on sircraft experience. Two versions were supplied - one based on horizontal takeoff
and a second based on “needed for landing only.”

The uncertainty ratings show mixed results aithough there is some consistency for
three of the WER parameters. The OMS Propellant Tank parameter, “ctnk”, was given a
“2” rating by three individuals including the NASA expert. One other expert gave the
parameter a “Moderate™ rating, which is the next higher adjacent rating from “2”.

The Avionic Cabling parameter, “wac”, was given a “4” rating by the same three
individuals as rated “ctnk” as & “2”. The same individual that rated “ctnk” st the next
higher rating chose the next higher rating for “wac” by assigning a “High” rating.

The Wire Tray parameter, “wtray”, also exhibited some consistency in the ratings.
The NASA expert gave this parameter a “4” rating and the first two experts gave the
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parameter the next lower adjacent rating of “Moderate”. The third expert moved to the
more extreme “High™ rating which was still adjacent to the NASA expert’s rating but
further away from the rest of the group.

Expert #4 exhibited what might be considered extreme conservatism by providing
the more “Low” uncertainty ratings than any other expert. Notably, this expert did assign
the exact same rating as the NASA LaRC Expert on two out of six parameters and was
adjacent to the NASA LaRC Expert’s rating for a third parameter. This is particularly
interesting because this agreement occurred when Expert #4 did not assign a “Low”
uncertainty rating.

Obtaining results that show four individuals achieving some degree of consistency
was encouraging and suggested that the “Conditioning™ phase and the methodology itself
serve as mediating factors. These results were more consistent than anticipated.

Group expert #3 showed a general tendency to be less conservative than others in
the group and less conservative than the NASA expert. When this “non-conservative”
individual was taken into account, the consistency of the responses was quite good.

The next table presents the results from the Benchmark Questions.

Table 10 Benchmark Question Replies
| Question | NASA Exp. | Expert#1 | Expert#2 | Expert #3 | Expert #4 |

Ql Low # Low Moderate | 2

Q2 Difficultto | # 2 Moderate | Moderate

answer.®

Q3 Low # Moderate | Low Low

Q4 2 # Moderate | Moderate | Low

Qs High # High 4

High
# Expert #1 did not respond to Benchmark Questions. They were developed after his responses.
* Note: “Without knowledge of how the analysis or experiment was performed and the experience
level of the engincers, I would have to rate the uncertainty as high. With more understanding, the
uncertainty level could potentially decrease, but would probably not be low.” These were the
additional comments from the NASA LaRC Expert.
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The results from the Benchmark Questions showed some degree of consensus for
Questions 4 and S, adjacent assignments for Question 2, and somewhat different ratings
for Questions 1 and 3. The disagreement on Questions 1 and 3 would indicate that the
individuals place different importance on regression results using historical data (Q1) and
different importance on validation by “sctual structures or by some other analytical
techniques” (Q3). Agreement on Questions 4 and 5 would indicate that each expert
perceived the same uncertainty as the next expert for data based on “a known design”
(Q4) and data related to a “structure [that is] not well-defined” (Q5). Expert #4 exhibited
conservatism again by providing a “Low” uncertainty rating that diverged from the
group’s ratings.

The next table presents the results for the quantification of uncertainty.

Table 11 Uncertainty Quantification Replies

Qualitative | NASA Expert #1 | Expert#2 | Expert#3 Expert #4
Rating Expert
Low 10% $ <5% 10% 7.5%

| High 50% $ 30% 40% 40%
Moderate 30% S 10% 20% 20%

$ Missing data. Expert #1 failed to return this portion of the questionnaire.
These results were mixed. Little consistency is evident but extreme values are not

evident either. Expert #3 and Expert #4 were consistent and nearly perfectly calibrated

with each other. However, if we review some of the resuits in combination with the
earlier parameter rating an indication of consistency can be found. For the Wire Tray
parameter, “wtray”, the NASA expert gave a rating of “4” and Expert #3 gave a rating of
“High”. Now if we quantify those ratings, a “4™ rating for the NASA expert can be
derived by averaging his quantifications for “Moderate” and “High”. This results in a
percentage of 40% assigned to his “4” rating. Expert #3 assigned a quantitative value of
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40% as his belief in what “High” uncertainty means. So, despite different qualitative

ratings, the quantitative assessment is identical for this example. This also exhibits the

importance and the value of having the qualitative rating and the quantitative anchor as
elements in the methodology. This also exhibits the value of having both of these
documented for further evaluation (especially when analyzing a group’s ratings).

The next section presents the results from the “Follow-up Questions™.

Table 12

I. Ease of use and/or usefulness of methodology and questionnaire.

1.

Comment on the ease of use of the methodology.

Exp. | Response

#1 Basically well structured.

#2 Fairly easy to use - even though all of the examples were specific to rocket
launch design.

#3 Fairly easy to use. My lack of reference material limited some answers.

#4 It’s easy to pick a parameter. It’s also easy to make assumptions. But its hard
to get the assumption package “tuned” quickly because they all relate to one
another.

2. Do you find the methodology to be useful for a weight estimation analysis?

Exp. | Response

#1 Yes, good supplemental information - but could weigh against effect on overall
vehicle %.

#2 Yes - It is important to understand the limits of our estimating.

#3___| Using expert opinion is glwgys useful. [emphasis as originally provided by #3]

#4 Yes - It should bring focus to overall uncertainty and uncertainties in specific
areas. Continual scrutiny and refinement should reduce the uncertainty or
invalidate the approach.

3. Would you prefer to use your own models (WERs or MERS)?

Exp. | Response

#1 Most of WERS are my own models.

#2 Typically yes - each private entity in industry has spent years developing
Parametric and Relational Data for initial estimates and Actual Products
w/Analysis to support detailed estimates.

#3 Totally dependent on problem and WER documentation/reference material.

#4 Yes - always. This is a result of comfort and familiarity, also each engineering
house knows their strengths and weaknesses and would naturally adjust focus.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. Would you find the methodology useful if adapted to your own analysis problem with

your own models?

Exp. | Response

#1 Of course.

#2_ | Maybe - estimating uncertainty has its place but [... ]

#3 Yes.

#4 Yes, but I wouldn’t consider that a finished approach. For each new product
study the method would need a fresh review to adapt to the current design
scenario and its unique sensitivities.

II. Uncertainty
1. Did you find the original expert’s example judgments to be reasonable and
understandable?
Exp. | Response
#1 Reasonable
#2 Yes.
#3 Mostly.
#4 Yes.
._Does this interpretation of uncertainty (as total variation) seem logical to you?
Exp. | Response
#1 Yes, providing each subsystem is given 8 weighting factor.
#2 Yes.
#3 For the conceptual level.
#4 Yes.
. Do you have any other suggestion of how to jgterpret uncertainty?
Exp. | Response
#1 This would be difficult to do.
#2 No.
#3 Consider other distributions for data collecting (Triangular?).
#4 Yes. Programmatic definition for key performance design issues have
uncertainties of their own which impact the design. These are outside the loop
of independent functional design and result in “sliding™ the uncertainty scale.
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4. Do you have any other method or any suggestion of how to judge uncertainty?
Exp. | Response
#1 One way might be to somehow ify level of detail in the WERs.
#2 Not sure what you mean by Judge uncertainty. I think you mean evaluate and
or Quantify. If so an approach of looking at historical trends of prediction vs.
actual wt. of various systems and components could establish statistical
variation over time and give plausible results - Note - structural variation very
low; systems and payload variation typically High. New methods seldom as
effective as advertised 50% or less.
#3 This question could be very broad. Please call and discuss it with me.
#4 Yes. “Beating on desks”. Which means discuss concepts with designers to
investigate whether their approach is well-known and confident or if there are
significant technical issues that they are still groping with.

6.5 Summary Analysis

Mixed results were evident among the group of experts for uncertainty ratings of
the example WER parameters, for the Benchmark Questions and for the Follow-up
Questions. Much of the variation in responses and the non-replies might be attributed to a
lack of experience with this set of WERSs or to the fact that some “experts™ were not
expert in launch vehicle design. Although the group was well qualified in their respective
fields, aircraft or aerospace, some of the specific WER parameters (i.e. for Propellant
tanks) were unfamiliar to them.

Among the results there was consistency for portions of the questionnaire.
Responses to Question #4 on the Methodology were particularly encouraging. These
responses indicated a consensus on the usefulness of the methodology if it were adapted
for the individual expert’s models. This supports the assertion that the methodology can
be used as a template for other problems. By replacing the current problem and current
models with a different set of models (i.e., their own), the expert's are viewing the
methodology as a template that they could use.
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An important insight from Pitz is that a person’s knowledge of and representation
of “variability ... and other distributional properties such as skewness ... is less clear” (Pitz
1980, p. 88). This research takes a small step towards documenting some of the thought
process and in particular the reasons that are used by people to describe variability and
skewness. Documentation of reasons for uncertainty and the quantification of uncertainty
ratings move in this direction. In particular, the NASA expert chose to overrule the scale
and provide a rating of “Extra Low” along with a quantification and a reason.

The group of experts also provided revealing answers for the Section II Follow-up
Questions on Uncertainty. The direct tie between uncertainty and variability made by this
research was addressed by this set of questions. The group also provided reasons for their
uncertainty ratings and provided a quantitative interpretation. The responses were a
starting point for addressing the issue raised by Pitz (1980). This is another significant
contribution of this research.

One of the most significant results from the follow-up was the demonstration of
the usefulness of the combined qualitative rating and quantification of the qualitative
rating. Despite different qualitative ratings, the NASA expert and one other expert arrived
at the same quantitative rating which would then result in the same three parameter levels.
This clearly demonstrated the benefit of having these two steps in combination within the

methodology.
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Chapter VII
DISCUSSION AND CONCLUSIONS
7.1 Discussion

The initial task was to find 8 method to perform a risk analysis for weight estimates
of a launch vehicle. A risk analysis would provide weight estimates in probability density
function (PDF) form or more appropriately in cumulative distribution function (CDF)
form. While this is a graphical representation, the associated numerical values could be
given as probability deasity function parameters (i.c., mean and standard deviation for
normal distribution) or as a range of estimates or as some percentile value with an
associated probability. Each of these are considered to be desirable forms that could be
useful inputs to other estimating analyses.

As the research progressed, the primary hurdle to overcome was the scarcity of
data. To overcome this hurdle, an expert judgment methodology was developed. The
methodology borrowed many features from the fields of psychology and knowledge
engineering or computer science.

For the first test, the methodology was applied to a simplified case for weight
estimation of a launch vehicle. The results were satisfactory but the methodology had
some rough edges. This led to refinement of the methodology to make it easier to use and
to make each element more meaningful. Most of the revisions were prompted by
comments from the end user, the weight estimating engineer.

Multiple techniques were included as integral features of the methodology that was
developed for obtaining expert judgment. Problematic techniques identified through the
literature review have been avoided. This research contributes to the expert judgment
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elicitation literature by presenting this synthesized methodology. This is one piece of the
research puzzie that will begin to fill the perceived gap in “judgmental processes in risk
analysis” (Fischhoff 1989).

Specifically, this methodology differs from other methodologies by incorporating a
qualitative assessment as a starting point. The methodology does pot elicit preferences,
probabilities or utility functions. The absence of those types of elicitations is an additional
difference from most methodologies. The documentation elements of the methodology
are described in detail and serves as a model for other researchers or practitioners.

Most previous studies of expert judgment have dealt with antiseptic laboratory
experiments utilizing non-experts. This study addresses a real problem in an applied
engineering setting and utilizes an actual domain expert. Addressing an applied setting
problem is a contribution since the bulk of the literature has addressed experiments
conducted in a “laboratory” setting.

Of the previous applied setting research, neither Hammond, et al. (1987) nor
Mullin (1989) dealt with the level of complexity and the degree of uncertainty that the
problem in this dissertation involves. The approach taken in this dissertation and the
problem domain being addressed appears to be unique when compared to the existing
literature. Mullin (1986) seems to support this sentiment when she states, “an appropriate
structuring of the estimation problem is crucial ... in the ‘real world’, [but] there is
relatively little published work in this area to offer specific guidance” (Mullin 1986, p.
48). The methodology presented here describes the structuring of the problem and details
all the related assessment elements required to accomplish the estimation task.
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Other contributions of this research are also consistent with conceptualizations
preseated by Fischhoff (1989). That is, “to make ... knowledge accessible to others who
hope either to exploit the ... expertise or to solve the ... problem™ and “ to help users
organize their own knowledge in an effective way” (Fischhoff 1989). Both of these
purposes will be well served through the methodology developed here.

In order to execute the risk analysis, Monte Carlo simulation was integrated with
CONSIZ and demonstrated for a simple case. This included development of a random
number generator for sampling from the triangular probability distribution. Data
generated during the simulation procedure demonstration was submitted to a Goodness-
of-Fit test. Tests were conducted for each data set to verify the most appropriate
statistical distribution for the data. Matlab was also utilized to perform statistical analyses
of the simulation results and to produce the basic graphical outputs (PDF and CDF).

At each phase, the aim was to make the methodology and associated procedures
easy to use so that they would be used. After several refinements, the methodology was
applied to a full launch vehicle weight estimation task. The final revision of the
methodology incorporated all the recent suggestions including the opportunity to
document the reasons for uncertainty ratings at the time that the rating is made. Data
generation for the full vehicle design was completed in March 1996 and a Monte Carlo
simulation was executed during the last week of March 1996. This effectively
demonstrated the methodology for a full vehicle design, that is, every step of the
methodology was executed and resulting outputs were achieved.

SubsequemacﬁvityfowsedonWﬁonreluedtothee(ewﬁonofthe
Monte Carlo simulations. In order to optimize simulation parameters, more than 70
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independent simulations were executed. The primary simulation parameters of number of
iterations and random number generator were varied to achieve the optimal combination
of these system parameters. The optimal system parameters were recommended from
these results (see Chapter 5). The final outcome was a recommended simulation
procedure that was designed to provide an appropriate amount of information from the
simuaition results while also economizing on computer central processing unit (CPU)
time.

One final task was to validate the methodology utilizing additional experts in the
field of aerospace design or aircraft design. Specifically, other engineers with weight
estimation expertise were the targeted subjects. This was completed during the
December, 1996 to March, 1997 timeframe. All of the results from these additional
evaluations were discussed in Chapter 5 and in Chapter 6 under Research Findings.

7.2 Conclusions

The methodology was developed, refined and demonstrated. Based on the
expert’s evaluation and on the comments from the group of experts, the methodology is a
workable and useful methodology. Based on these results the methodology is expected to
be a flexible risk analysis approach that can become a valuable analysis tool in the
conceptual design of complex systems with uncertain design parameters. Programming is
underway to implement the methodology as an analysis tool at NASA LaRC.

The methodology reduces the uncertainty rating task by focusing only on the
parameters that warrant a rating, other factors are held constant. This primary feature of
the methodology facilitates the development of data that can then be used as inputs to
perform a risk analysis for weight estimates of a launch vehicle. The real contribution of
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the methodology is the development of expert judgment data in usable form.
Documentation of the reasons for the uncertain parameter ranges provide a history for
future evaluations. This integral feature of the methodology is a significant contribution
since it is developed from a synthesis of other methodologies taken from examples in the
literature. The methodology could also be adapted for other parametric analyses that need
to address uncertainty and have little or no data available.

7.3 Limitations

“Often the most important judgments (requiring the skills of the most
accomplished experts) concern matters that will not be resolved for years. As a result,
there is little opportunity to learn about the overall quality of one’s judgmental processes
or how they can be improved” (Fischhoff 1989);(e.g. Fischhoff 1982; Brehmer 1980;
Henrion and Fischhoff 1986). Research in realistic settings “may appear to be more
‘relevant’ ... than laboratory research, it may not necessarily be more generalizable or yield
greater predictive accuracy, particularly because of the difficulties inherent in establishing
controls in realistic settings and/or the often small number of experts used as subjects in
such studies” (Beach 1975).

These observations are true of the research in this dissertation. The judgments
cannot be verified conclusively until and unless the actual launch vehicle in question is
built. While this does place some limitations on the research findings and the
generalizability of this research, other means have been pursued to verify methodology
features.

Experts have been used from related domains, sircraft and aerospace, in order to
obtain some external verification and validity check for methodology features and the
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methodology as a whole. In addition, other critiques have been solicited for the earlier
papers from this research and those criticisms have been acknowiedged and incorporated
into this document. These efforts lend some credence to statements of generalizability
across a limited range of decision domains.

7.4 Future Exteunsions

Future research might include using the methodology for addressing uncertainty
for the conceptual design of a different launch vehicle design. This would serve the
purpose mentioned earlier of becoming a comparative tool.

The methodology could also be employed to a similar problem from a different
domain such as aircraft design or shipbuilding. A more generalized test of the
methodology would involve applying the methodology to a different type problem from an
entirely different domain.

An analysis of the group process and group outcomes might be conducted
employing the methodology and a larger targeted group of experts. This might reveal
more about the consensus or disagreement among experts and might lead to an enhanced
methodology for group ratings.

One of the group of experts suggested “pounding on desks”. By this he meant an
investigation of existing methodologies that are used by practitioners could be conducted.
This type of investigation would serve to explore and document existing methods that
have not previously been publicized.

The latter types of research (i.e., involving a group of experts) would afford a
greater opportunity to draw generalizations and to explore multiple domains with the
methodology. Other decision making research analysis techniques might be employed to
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assist in this effort. Metric conjoint analysis (Priem 1992) is one example of a technique
that has been employed to study executive decision rules as they relate to organizational
outcomes (Priem 1992). By adapting the metric conjoint analysis technique (or some
other technique) to the group analysis, a more rigorous statistical analysis could be
conducted. This would be particularly useful for problems where final outcomes can be
analyzed as part of the research.

On the whole, the future research opportunities are abundant. Based on the results
in this dissertation, the topics and the methodology are worthy of additional attention and
investigation. Any of the future extensions of this research may serve to demonstrate the
methodology’s use as a template and add to the generalizability of this research.
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Vehicle: unsased sov dual-fael, -0, hocz. 30 S A bay,
Bkbpi-SlSic

PLEASE Proviie o midpeing, 2 lower rangs vains and sn upper rangs valne far aach of the fillowning subsystans.
Utss the rating shest for uncartainty es & guide 0 deterwing how Sroad the renge should be for a given subsystem.

Subsystens
Lew M Hgh

10 Wag
20 Tad
30 Body

RATING SHEET FOR SUBSYSTEM WEIGHT UNCERTAINTY

Vehicle: wnansed sv dual-fael, 3-701, horz. 30 S pA buy,
Bkbpl-SiSimc

FOR WEIGHT ESTIMATING:

PLEASE RATE EACH OF THE POLLOWING SUBSYSTEMS ON THE SCALE 1 TO S WITH 1 BEING LOW
UNCERTAINTY AND S BEING HIGH UNCERTAINTY. MODERATE UNCERTAINTY WOULD BE RATED J. THIS
EXERCISE IS INTENDED TO PROVIDE A RELATIVE MEASURE OF UNCERTAINTY AGAINST OTHER SUBSYSTEMS.
Circis any lower level subaystams that are the primary scwrce of weosrtainly in a given sebeystem.

Based on your judgment:

OFf ol the subsystans which ans s Ghe mest unsartain with regand o waight?
Rate that snbsyston now.

Which subsystem hes the loast smcertainty with segard ¢o waight?
rads the ether subsyutons as high, low or medornte.

Rate Gt subsystom now. Uss these twe amchers to

Subsystens
10 Wing 1 2 3 4 s
Expossd wing surfcs (supwing)
Cary-trough (cthre)
20 Tad 1 2 3 4 s
30 Body 1 2 3 4 s
L2 wnk
Karcasns tank
LO2 wnk
Basic strucke
Secondary struchere
UNCERTAINTY VALUATION
Yeour anderstonding of high uncerteinty weuld be amecisted with what esnfidence svel? In ether words - what percant s uncertain?
0% 3% “@% 2% Mere
Yeur andarstunding of low uncertuinty wounld be sssecinted with what confidence hvel? Aguin, express Ghis in Ge paromnt et b
wmcertein,
1% » 10% 19% AMare

Yeur undsrstoniing of mederste sncertainty weuld be expremed oo what percent ancertain?
10% 19% % 29% Maere

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix B

Rationale for Reasons and Cues Documentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100

The following document was sent to the expert at NASA LaRC on February 28, 1996:

2/28/96

Roger:
The following should further explain why I have added “CUES™ as another element of the questionnaire.

First from an article by:
Ettenson, R., Shantean, J. and Krogstad, J. 1987. Expert judgment: Is more information better?

Psychological Reports, 60, 227-238.

The abstract reads as follows:

“Two groups of professional auditors (expert ns = 10 and 11) and one group of 11 accounting students
(novices) made judgments for 32 bypothetical auditing cases which were based on 8 dimensions of
novices in the sumber of significant dimensions: both the professionals and the students had roughly
three significant factors. Whea evalusting the information, however, the experts’ judgments
primarily reflected omne source of information, with ether cues having secondary impact. In
comparison, no single cue was dominant for the students’ judgments. These results were interpreted to
indicate that the sonnse of information by experts does not necessarily indicate a cognitive
limitation. Instead, experts have better sbilities to focus on relevant information. The professional
auditors also exhibited greater consistency and consensus than did the studeuts. In contrast to much
previous work, the experts here are viewed as being skilled and competent judges.”

The SCENARIO:
“Normalmdxtptwedmulﬂdywmbelmthtﬂnyar-end *Allowance for doubtful accounts’ should

be increased.”

The 8 dimensions (or 8 cues) are:

1. Company is nondiversified in declining industry with sales declining at 15% annually.

2. Co. is closely held corp. with creditors as primary users of financial statements.

3. Co."s management is less than completely cooperative and open with you during andit.

4. Co.’s management has conservative accounting policies and reporied earnings are high quality.

5. Your review disclosed no material weaknesses in accounting practices.

6. Proposed adjustment reduces current ratio from 2.1 - 1 to 1.7 to 1 (industry is 2 - 1 typically).

7. Proposed adjustment will decrease current income after taxes by 2.7%.

8. The afier-tax impact will reverse an otherwise upward earnings per share trend that has prevailed for

the preceding three years.

While the accounting scenario was sct up for experimental purposes, this should give you an idea of the
types of things that might cue a decision in a particulsr direction. In essence, the request for “cues™ may
be redundant with reasons but the intent is to determine how much information you are using to make
your uncertainty rating. This may also take the form of PRIMARY and SECONDARY information
(reasons and/or cues). The intent is also to prompt you to think of additional information that you are
actually thinking about that influences your uncertainty rating and document those as ¢ither reasons or
cues. This serves to document your knowiedge that might otherwise be lost in the process.
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INSTRUCTIONS FOR QUESTIONNAIRE
(prier to final revisien)

L Rats subsystems for MOST UNCERTAIN and LEAST UNCERTAIN to prioritiae the subsequest
parameter evalustions.

2. Rate WER uacertainty QUALITATIVELY frem Low, Maderate ¢o High uncertainty. Focus culy en
those WER parametsrs that you feel sheuld be evaluatad in this manner.

3. Anchor your QUALITATIVE measure of uncertainty to s QUANTITATIVE messure en the S-point
scale previded.

4. Provide 3 point estimates [Low, Moeds or Mest Likaly, sad High) for each of the MOST UNCERTAIN
WER parametsrs identified in the preceding stepe.

S. Describe the reasea for the uncertainty aad the reascaing behind the parameter value ranges for the
MOST UNCERTAIN WERs.

6. Describe any scenaries thst may change WER PARAMETER valuss. Provide the siternative WER
PARAMETER values that in your judgment weuld be spprepriste for the scenario.

FINAL REVISED
INSTRUCTIONS FOR QUESTIONNAIRE

L. Rate WER parameter uncertainty QUALITATIVELY from Low, Moderate to High uncertainty (and
the 2 intermediate ratings for a total of S possible ratings). Focus oaly en those WER parameters that you
feel should be evaluated ia this manner.

2. Describe the reason for the uncertainty and the ressoning behind the parameter value ranges for the
UNCERTAIN WER;s that you rated. Do this simultancously while rating each WER parameter to
document your thinking.

3. Think of say ether cus (or reasea that you have net decumented) and record thst informstion st this
time.

4. After rating sll WER parameters, next anchor your QUALITATIVE measure of uncertaiaty to s
QUANTITATIVE measure ea the S-point scale provided.

S. Provide 3 poiat estimates [Low, Mode or Most Likely, and High] for each of the MOST UNCERTAIN
WER parameters ideatified ia the proceding steps.

6. Describe say scenarics that may changs WER PARAMETER valuss. Previde the alternstive WER
PARAMETER values thst in your judgment weuld be appreprists for the scensrie
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Qualitative WER Uncertainty

Focus on the UNCERTAIN Subsystem WERs snd rate each WER for the amount of
uncertainty.

The rating choices are LOW, 2, MODERATE, 4, HIGH and Noae.

Choose Low, Moderste or High based on the level of Uncertainty that you feel applies to
that particular subsystem WER.

Choose 2 if Uncertainty is more than Low but less than Moderste.
Choose 4 if Uncertainty is more than Moderate but less than High.
Choose NONE if the WER is constant or 100% certain.

Provide a Quantitative explanstion of your understanding of Low, Moderate and High
uncertainty.

The amount of uncertainty or variation that I associste with Low Uncertainty is:
LessS% 15% 10% 15% 20% More

The amount of uncertainty or variation that I associste with High Uncertainty is:
Less15% 20% 30% 40% S0% More

The amount of uncertainty or varistion that I associste with Moderste Uncertainty is:
Less 10% 15% 20% 25% 0%
More
For ratings of 2 or 4 on the Qualitative rating sheet:
the midpoint between Low and Moderate will be used for a 2 rating

the midpoint between Moderate and High will be used for 2 4 rating
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3 Point Estimates
for WER parameters

Provide 3 point estimates for each of the WERs for the MOST UNCERTAIN
Subsystems.

The 3 points should be the MINIMUM, MODE (MOST LIKELY) and MAXIMUM
values for the WER parameter.

The nominal case is listed on the questionnaire as the MODE. If this is not a correct
assumption, make the necessary adjustment by crossing out the number and
providing 3 point estimates for that WER parameter.

Review your Qualitative rating of the WER parameter when assigning the 3 point
values. The percent of Uncertainty can be considered as the percent of potential
variation in the parameter values.

Describe the reasons for Uncertainty on a form in the Questionnaire section
immediately following this section.
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WING subsystem
Select the WER parameters from the following list that you want ©o evalusie for uncertainty.
(cxpwing) parameters

¢ ‘7 10 constant

(4 ‘el’ 82954 equation coefficient

¢ <2 001 divide load by 1000

¢’ ‘usf’ L75 ultimate safety factor

¢ ‘af 20 load factor

3 ‘wiand’ landed wt

‘s’ ‘exp’ 3360. exposed wing area

¢ k 4 148 aspect ratio based on exposed area

¢ v 34 taper ratio ct/cr

¢ ‘toc’ 10 thickness to chord ratio

¢ ‘el’ 48 exponent

¢ ‘e 67 exponent

¢ ‘e3' .64 exponent

¢ ‘o4’ 40 exponent

c ‘rew’ 40 reduction factor (Jo2-1h2 ssv, ezedesit, Gr/Ep)

From the WING (expwing) WER parameters you have selected:

[ ¢ eq. coef. 0.82954 ]
Low 2  Moderate 4  High

Now that you have rated the uncertainty for this WER parameter, please provide a reason or reasons for
your rating.

To further document your thinking, plcase provide any cues (or triggers) that influence your thinking
about this parameter.
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Questicnnsire (by WER for parameter value ranges)
for ssv dual-fuel, rd-701, borz. 30 ft p/l bay, 25kib p/l - S1.6 inc.

—Ying Low Mode High
c usf L78 uitimate safety factor
c of 20 load factor
c ar 148 aspect ratie
c tr 034 taper ratie
c toc o.10 thickness to chord ratio
c eq. coef. 082986
c rew 040 reduction factor
a xp 3360 exposed wing area
s wiand
cthra Low Mode High
c usf L75 uitimate safety factor
¢ of 20 load factor
c ar 148 aspect ratio
c tr 034 taper ratio
c toc 0.10 thickness to chord ratio
[ eqg. coef. 319.29
c rect 0.40 reduction factor
s wiand
tail Low Mode High
¢ eq. coef. 500
[ rf 0.10 reduction factor
a exp 3200 exposed wing area
Body (LH2 tank)
—thatstr Low Mode High
c [ 0.364 unit wt of tank
c d_lh2 4.0 LH2 density
s wih2 Ih2 prop weight
c ull 0.0428 tank ullage fraction
¢ rih2tmk e reduction tank
Ih2ing Low Mode High
¢ ¢ 0.286 unit wt of insulation
c 0 43169 k factor coust. term
3 cl 0.501%4 k factor lincar term
c d_h2 4.0 LH2 demsity
s wih2 1h2 prop weight
¢ ull 0.0428 tank ullage fraction
| wb e body width (Tt)
c rib2ins [ X ] reduction factor
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SCENARIOS

Describe any scenarios that may change WER parameter values.
Provide the alternative WER parameter value ranges that apply to the scenario.

SCENARIO

ALTERNA' WER meter v
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[Bold and italicized statements are ratings, reasons and cues provided by expert]

WING subsystem
Select the WER parameters from the following list that you want t0 evaluate for uncertainty.
(ﬂll'ilt) parameters
1 1.0 constant

'c’ ‘cl’ 82954 equation coefficient

¢ ‘<2 001 divide load by 1000

¢ ‘usf 1.7 ultimate safety factor

¢ ‘of 20 load factor

1 3 ‘wiand’ landed wt

‘s’ ‘exp’ 3360. exposcd wing area

¢ ‘s’ 148 aspect ratio based oo exposed area

¢ v 34 taper ratio ct/cr

¢ Soc’ 10 thickness 1o chord ratio

¢’ ‘el’ 43 exponent

¢ ‘2 67 exponent

¢ ‘e3* 64 exponent

-4 ‘ot 40 exponent

¢ ‘rew’ 40 reduction factor (lo2-1h2 ssv, ezedesit, Gr/Ep)

From the WING (expwing) WER parameters you have selected:

[ ¢ eq. coef. 0.82954

Rate the of inty that you associate with this .

Low 2 Moderate 4 High

Now that you have rated the uncertainty for this WER parameter, please provide a reason or reasons for
your rating.
“For conceptual design, WERs for wings are typically more accurate than for other components. ”

To further document your thinking, please provide any cues (or triggers) that influence your thinking
about this parameter.

“1. WER is based on a regression of kistorical data points. "

*“2. Fit to data is good.”

“3. Data points are applicable to vehicle type.”

“Size of applicable data set.
Basis of weight (actual, calculated, estimated). ”
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From the WING (expwing) WER parameters you have selected:
| ¢ rew 0.40 reduction factor |

Rate the of inty that you associate with this -

Low 2 Moderase 4 High

Now that you have rated the uncertainty for this WER parameter, please provide a reason or reasons for
your rating.

“Reduction factor is for the use of composites. Little historical data exists for composite structure
usage.”

To further document your thinking, please provide any cues (or triggers) that influence your thinking
about this parameter.

“1. Reduction factor has not been validated with actual structures.

2. Factor represents changes in construction type as well as material. "
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Wing cthru subsystem
Select the WER parameters from the following list that you want 10 evaluate for uncertainty.
(cthru) parameters
'c’ ' 1.0 constant
e’ 5 S coastant
e’ 2 20 constant
'c’ ‘et' 319.29 equation coefficient
' ‘2’ 001 divide load by 1000
'c* ‘usl’ 178 altimate safety factor
c' ‘af’ 20 load factor
s ‘wiaad’ landed wt
T ‘we’ 36 carry-throngh width
T ‘bs’ $7.94 structural span
e’ ‘ar’ 148 aspect ratie
e’ ‘v 24 taper ratie
T ‘wspan’ ] exposed wing span
e’ ‘toc’ 10 thickness to chord ratio
T ‘roote’ 20.0 root chord (exp wing)
¢ 'me’ 1.66e-S rho/sigma material const. alumisum
¢’ ‘' L14 geometric parameter
e o’ S0 exponent
¢’ ret’ A0 reduction factor (Jo2-1h2 sev, ezedesit, Gr/Ep)

From the cthru WER parameters you have selected:

[ ¢ eq. coef. 319.29 1

Low 2 Moderate 4 High

Now that you have rated the uncertainty for this WER parameter, please provide a reason or reasons for
your rating.

“WER formulated specifically for this vehicle type using semi-analytical approach. ”

To further document your thinking, please provide any cues (or triggers) that influence your thinking
about this parameter.

“1. Regression of historical data points.

2. Excellent fit to data.

3. Low number of dsta points.

4. Data points are estimates, not actual weights.”
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Body (LH2 tank)
Ib2tstr subsystem
Select the WER parameters from the following list that you want 0 evaluate for uncertainty.

h2tstr’
*©’ 7 Lo coust
'’ e 364 unit wt of tank (Ib/’) (02-1h2 sev, exedesit, Al-Li)
'’ 'd_n2 443 2 density /%)
s’ ‘wih2’ 2 prop weight
' ull 0428 tank uliage fraction
¢ ‘rib2tak’ [ reduction factor

From the Ih2tstr WER parameters you have sclected:

I ¢ c 0.364 unit wt of tank

Rate the of inty that you associste with this :

Low 2 Moderate 4 High

NowthtmhwnﬂtbmﬁmyﬁﬁkWﬂlW.ﬂuuwﬂcamumﬁx

your rating.
“An over-simplified WER and the use of a new material (Al-Li) lead to relatively high uncertainty.”

To further document your thinking, please provide any cues (or triggers) that influence your thinking
about this parameter.

“1. Weight derived from FEM analysis with non-optimum factor applied.

2. Scaled by volume only, no other geometry parameters considered.

3. Al-Li material. ”
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Body (Kercsene tank)

hetstr subsystem ]
Select the WER parameters from the following list that you want 0 cvaluate for uncertainty.
'hctstr’ parameters

e’ 1’ 10 const

¢ 4 £56  wnit wt of tank (IVIY")

¢ 'd_bhe' S0.S  hydrecarben deumsity (/")

s ‘whe' hydrecarbon prop weight

e’ ull’ 0428 tank ullsge fraction

e’ ‘rhctak’S. reduction facter
'heins' parametery

¢ x1° 1.8 coust’

' e’ [ X unit wt of insulation (/")

a’ *shetnk’ 7768. hydrecarben tsnk ares (i)

e’ 'rixcins’ 0.0 reduction factor

From the betstr WER parameters you have selected:

[ ¢ c 0.656 unit wt of tank

Rate the of inty that you associate with this

Low 2 Moderate 4 High

Now that you have rated the uncertainty for this WER parameter, please provide a reason or reasons for

your rating.

“An inappropriate, but conservative WER and the use of a new material (Al-Li) lcadton:odaate
uncertainty. Uncertainty is reduced with the assumption of a minimum gage structure.

To further document your thinking, please provide any cues (or triggers) that influence your thinking
about this A

“1. Largely minimum gage structure.
2. Scaled by vioume only, no other geometry parameters considered.

3. Al-Li material.
4. Conservative weight calculated when tnak size grows. ™
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Body (Secondary structure)
plstr subsystem .
Select the WER parameters from the following list that you want 10 evaluate for uncertainty.
'pistr’ parameters
IR | 10 comst
e’ ¢ 6500, M bay/ker. tank support and nose gear bay str.
(Robinson est.)
e’ ‘rshrd’ O reduction facter
From the pistr WER parameters you have selected:
| ¢ c 6500. _p/l bay/ker. tank support and nose gear bay str.

Rate the of inty that you associate with this :

Low 2 Moderate 4 High

Now that you have rated the uncertainty for this WER parameter, please provide a reason or reasons for

your rating.
“Lack of definition in structure design and use of new material (Gr-Ep) resulils in high uncertainty. ™

To further document your thinking, please provide any cues (or triggers) that influence your thinking
about this parameter.

“1. Provided by another weight analyst.

2. Rough estimate.

3. Highly conservative.”
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Body (Secondary structure)
hsdstr subsystem
Select the WER parameters from the following list that you want $o evaluate for uncertainty.

‘hadstr’ parameters
' 1’ 1.0 const
¢’ 2 2.0 const
¢’ e’ 25 unit wt of heat shield str (/%)
e’ i’ 3.1416
T ‘wd' body width
2’ ‘shase’ base area (%)
¢’ ‘rhtsd’ I35 reduction factor

From the hsdstr WER parameters you have selected:

| ¢ c 2.50 unit wt of bt shield str ]

Rate the of that you associate with this d

Low 2 Moderate 4 High

Now that you have rated the uncertainty for this WER parameter, please provide a reason or reasons for
your rating.
“Use of shuttle data and assumption of similarity results in relatively low uncertainty.”

To further document your thinking, please provide any cues (or triggers) that influence your thinking
about this parameter.
“1. Shuttle derived.

2. Aluminum structure.

3. Area scaling.

4. Approximation (cut-outs not considered).”
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Table 7
Subsystem WER Parameter Pt. Bst. | Uncertainty | Low Mode High
rating value valoe |
| Wing eq. coef. 0.52954 | Low 0.7881 0.82954 | 0.8710
Wing rew (reduction factor) 040 4 0.32 040 0.48
cthru eg. coef. 31929 | 2 (Low-Md) | 287.36 319.29 351.2
cthru ret (reduction factor) 040 J4(MH) 1032 040 0.48
tail eq. coef. 50 2(LM) 45 50 55
nf (reduction factor) 1010 [ 2(@-M) 0.08 0.10 0.12
Body - LH2 Tank ¢ (umit wt of tank) 0364 4 04&H) 0291 0.364 0.437
Th2tstr
Body - Ih2ins ¢ (mitwtof 0286 Moderate 0.243 0286 0.329
— insulation
Body - Kerosene Tank | ¢ (umnit wt of tank) 0.656 Mod. 0.558 0.656 0.754
hetstr
- heins none rated —
Body - LOX Tank ¢ (unit wt of tank) 0458 4 (4H) 0.366 0458 0.550
loxtstr
Body - loxins ¢_(umit wt_of insul) 0.232 Mod. 0.197 0.232 0.267
Body - Basic ¢ (unit wt of stroctire) | 1.11 4(MH) 0.888 1.1 1.33
Structure - nose
Body - Basic ¢ (unit wt of structure) | 1.64 4 (M-H) 1.31 1.64 1.97
Structure - inter _
Body - Basic Str. - ¢ (unit wt of struct) 40 4 (M-H) 32 40 4.3
aftbdy
Body - Basic Str. - ¢ (constant (Ib/1b)) 00021 | 4 (M-H) 0.0017 0.0021 0.0025
thrst
Body - Basic Str. - ¢ (unit wt of struct) 131 4 (M-H) 1.05 131 1.57
| engbay
Body - Secondary Str. | none rated
- crcab
Body - Sec Str-doors | ¢ (3 Ib/ft* doors, 3088 | 2100 Low 1995 2100 2205
length) -
Body - Sec Str-plstr | ¢ (p/l bay/ker. tank 6500 High 3575 6500 6825
suppart and noscgesr
bay sir)
Body -Sec Str - shrd c (1.0 A% 1800 4 (M-H) 1440 1800 2160
Body-Sec Str-hadstr ¢ (uitwtofhtshicld | 2.50 20-M) 225 2.50 2.75
oir)
Body-Sec Syr-hsdstr | rhitsd (reduction factor) | 0.35 <(MH) not
provided
Body-Sec Str-bflap | ¢ _(unit wt of body flap) | 3.58 | Mod 3.04 3.58 4.12
Induced Environment
| protection - TPS
Fuselage - fusetps ¢ (mitwtoftps 1.152 Mod 0979 1.152 1.328
Fuselage - fusetps msecu (reduction 0.268 4 (M-H) 0214 0.268 0.322
factor) - -
Wing - wingtps ¢ (unit wtof tps 1287 Mod 1.030 1.287 1.480
Wing - wingtps rwl (reduction factor) 0.268 4 (M-H) not
provided
Internal insulation cansins (insulation unit 0.75 2(1-M) 0.675 0.7 0.825
Nose ninsul wt. - shuttle)
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Table 7
Subsystem WER Parameter Pt Rst. | Uncertainty | Low value | Mode | High value
rating
Payload bay doors - | cplins (insulation 023 20-M) 0207 023 0253
| plinsul it wt. - shuttie)
Equipment bays - wequins (equip. bey | 650.0 Mod 553.0 6500 | 7480
| eginsal insul. wt - shottle)
Purge, vent, dm, and id (pvd const - 123 20-M) 111 123 13.5
hazard gas det-pvd | mid body, I/it) —
pvd chaft (pvdconst-aft | 18.3 20-M) 16.5 183 1} 20.1
body, /)
pvd cwng (pwd const - 1.3 2A-M) 12 1.3 14
wing, /%) _
Undercarrisge and Mgy oang 18.9 Mod 16.1 18.9 21.7
aux. systems - Nose (sunning gesr const.-
| gear - Running gear | nosc)
nsgstr castr (gear structure | 9.48 Mod 8.06 9.48 10.9
const. - nose
|__nspstr tig (reduction factor) | 0.1 2(1L-M) 0.135 0.15 0.165
nsgentrl encatrl (controls 0.08 Mod 0.068 0.08 0.092
constant - nose)
Main gear cmrg 173.0 Mod 1470 1730 | 1990
Running gesr
Structure mngstr | cmstr 352 Mod 29.9 352 | 405
| Str. _mngstr rig 0.15 2(1-M) 0.135 0.15 | 0.165
Controls mngentrl | cmentrl 0.06 Mod 0.051 0.06 | 0.069
Propulsion, main towe L1 2(1-M) 61.0 70.2 764
| Engines _eng
___press cpl “4 Mod 37.7 444} SL1
Helium pneumatic chesys 592¢4 | Low 5.62¢4 5.92¢- | 6224
| and purge system _be 4
he chetnk 15.9 Low 15.1 15.9 16.7
ion reaction
control (RCS)
Thrusters othratr 9 Low 8 9 10
andsupports
Fwd
Fwd wihstr 5.3 4 (M-H) 42 5.3 6.4
Aft nthstry 12 Low 11 12 13
Aft 18 Low 17 18 19
A wihstry S3___Ta0al) 42 53 led
Aft wthstrp 2.0 | 4 M-H) 17.6 20 |264
Propellant tanks ctok 0.34 2a-M) 031 0.34 0.37
restanks
Distribution snd cdistr 13040 |4 (M-H) 1043.0 1304. | 1565.0
recir-culation  distr 0
distr crecirc [] 4 M-H) 4 ] 6
Valves cvalves 569.0 4 (M-H) 455.0 569.0 | 683.0
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Table 7
Subsystem WER Parametsr Pt Est. Uncertaint | Low Mode High value
y rating value
mancuver (OMS)
| Engines _omseng ceng 181.8 Mod 154.5 181.8 209.1
Propellant tanks ctok 0.037 20-M) 0.033 0.037 0.041
omstanks
omstanks isp [®sce note) 462.2 Low 453.0 4622 471.4
Pressurization chetnk 112 Mod 0.95 112 129
| ISPEs
Prime power ¢ n Mod 3.15 3% 426
Fuel cell system
feell -
| feell ple_ 240.0 Mod 204.0 240.0 276.0
Resctant dewars ¢ 099 21M) 0.89 0.99 1.09
dewar
dewar mdw (reduction 0.10 Low 0.095 0.10 0.105
factor)
Batteries none rated
Electric conversion pécnom 20 Mod 128 150 173
and distr. powcon
powcon cpec 812 Mod 69.0 812 934
powcon cinst 1.75 Mod 1.49 1.75 2.01
powcon pc  (reduction 0.20 High 0.15 020 0.25
factor)
Circuitry cepde 81.6 Mod 694 81.6 938
Elect. pwr dist and
atl epde _
epde pfcoom 220 Mod 12.8 15.0 17.3
epdc cinst 1.23 Mod _ 1.05 123 1.41
epde repdc 0.10 High_ 0075 ] 0.10 0.12§
Avionic wac (avionic cable | 2565.0 4(M-H) 20520 | 25650 | 30720
avcable wi-chuttle)
avcable winst (supports 5640 4(MH) 451.0 564.0 677.0
and installation wt.
- shuttle)
avcable rcab (reduction 0.30 2AM) 027 0.30 0.33
fuctor -fiber optics)
avcable rinst (reduction 020 2(1-M) 0.18 020 02
factor supports and
installation)
RCS cabling wresesb (res 890 4 (M-H) no £9.0 107.0
rescab ing wi-shuttle _
rcscab a (mdnﬁn. fact | 030 2(1L-M) 027 0.30 0.33
OMS cabling womecab 27%.0 4 OFH) 210 276.0 331.0
omscab
omscab rcab (reductn fact. | 0.30 2AM) 027 0.30 0.33
fiber optics)
Connector plates woonn 2070 Mod 176.0 207.0 2380
conpit
Wire trays wirays (wire trays | 592.0 4 (M-H) 474.0 592.0 7100
tray wt -shuttle)
tray m (veduction 020 2(L-M) 0.18 020 022
)
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Table 7
[ Subsystem WER Parameter PLEst. | Uscertsint | Low | Mode | High
yrating | valwe value |
emcable kive (pwr/wt for gimbal 0.108 Mod 0.089 | 0.105 0.121
emcable ks (pwrfwt for control 0.035 Mod 0.030 | 0.035 0.040
surface
EMA control mits cam (ectustor and motor | 8.0 4 (M-H) 64 80 9.6
emcon contrl unit const.)
emcon kivc (pwrfwt for gimbal | 0.105 Mod 0.089 | 0.108 0.121
m;
emcon kes (pwrfwt for control 0.03S Mod 0.030 | 0.035 0.040
snface
emcon remcu _(vreduction factor) | 0.10 High 0.075__10.10 0.125
Hydraulic conversion | [no weight allowance]
and distr.
Control surface kel (elevon const., ans) 0.0043 Mod 0.0037 | 0.0043 0.0049
sctustion Elevons
el act
el act relact (reduction factor) 0.10 High 0.075 |0.10 0.125
| Tip fins _tfact ktf (rudder const. ema 0.0036 Mod 0.0031 | 0.0036 0.0041
tf act rtfact (reduction factor) 0.10 High 0.075 |0.10 0.125
Body flap bfact kbf (body flap conat., 0.0040 Mod 0.0034 | 0.0040 0.0046
ema
bf act rbfact (reduction factor) 0.10 High 0.075 ] o0.10 0.125
Avionics guid., nav., | rgac (reduction factor) 0.3 Mod 062 0.73 0.84
and catrl. _ gnc
Comm. snd tracking | rcts (reduction factor) 0.75 Mod 0.64 0.75 0.86
comtrk
i and contrl. | none rated
Instrum. system ris (reduction factor) 0.456 Mod 0.388 | 0.456 0.524
instr
Data processing rdps (reduction factor) 0.751 Mod 0.638 0.751 0.864
| dproc _
Environmental control | wi (invariant wt (Ib/man) | 81.0 2(L-M) 729 81.0 89.1
Personnel system
par n
perr ¢ (constant [b/man-hr) 0.295 2(1-M) 0.266 | 0.295 0.325
_perr renv_(reduction factor) 0.10 High 0.075 10.10 0.125
Equipment cooling cec (cabin environ 414 Mod 352 414 476
eqeool constant - [b/kw)
eqeool picnom (nu:;ml fuel cell | 220 Mod 128 15.0 173
- kw)
eqeool renv_(reduction factor) 0.10 High 0.075 |]0.10 0.125
Heat transpost loop cht (freom loop const) 0.386 20-M) 0.347 | 0.386 0.425
|_loop
loop picnom (fuel cell nom 220 Mod 12.8 150 173
por kw) — —
loop renv_(reduction factor) 0.10 High 0.075 ] 0.10 0.125
Heat rejection system crad (sadistor const 1) | 0.805 Low 0.765 | 0.80S 0.845
rad
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Table 7
Subsystem WER Parsmeter Pt Bst. | Uncertainty | Lew | Mode | High value
rating value
rad renv_(reduction factor) 0.10_ | High 0075 _10.10 10.125
Flash evaporator cfe (flash evaporator constant | 7.36 Low 6.99 736 [1.73
| system __ovep Ih/kw)
evap plcnom. (fel cell som pwr 220 Mod 12.8 150 173
kw)
evap ctnk_(water tank const: 0.048 | Mod 0041 | 0.048 | 0.055
evap cinst (supprts andinstall. 1.10 2(1-M) 0.99 1.10 1.21
factor) —
evep Tenv_(reduction factor) 0.10 0075_|0.10_Jo0.125
Personnel provisions | none rated
seats nooe rated
[Payload provisions | none rsted
none rated

(Margin_____| oone rated
*Note: The expert recorded this note for the gmstnks isp parameter:
“extra low uncertainty, 2% (could use skewness here)”

Note: The expert over ruled the point estimate for all point estimates that are italicized and
bold. He then provided a range of three estimates that excluded the point estimate entirely.
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Appendix E
Statistical Analyses
Analysis of variance (ANOVA) was conducted to ascertain the optimum number of
iterations for the Monte Carlo simulation procedure. When the factor was specified at
three levels (e.g. 500, 1000, and 2000) ANOVA tests the hypothesis:

Ho: ph= 2= yis

Hi: not all 4 are equal
Rejecting the null hypothesis indicates that there is a treatment effect for the factor being
analyzed. Failure to reject the null hypothesis means there is no treatment effect for the
factor analyzed.

The anticipated results for the analysis of the simulation system parameters were
that only the statistical distribution used for sampling distribution of the random number
generator would show a significant treatment effect. There would be no treatment effect
for number of iterations and no treatment effect for the random number seed. These a
priori expectations were based on the intuitive difference between the triangular and
normal distributions. Prior results of Monte Carlo simulations suggested that convergence
would occur early, between 500 and 1000 iterations, 5o no treatment effect was
anticipated for number of iterations.

E.1 Analysis of Variance for Simulation System Parameters
E.1.1 Number of Iterations

Analysis of variance (Anova) was performed utilizing simulation outputs as the
data being snalyzed. The analysis was conducted in order to optimize the system
parameters for the Monte Carlo simulation. The initial Anova’s were performed to
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determine the optimal number of iterations to be executed. The first Anova evaluated the
mean with iterations varied at three levels - 500, 1000, and 2000 iterations while holding
the random number generator constant using the triangular distribution and the seed
values were matched for each iteration level so there was no variation attibutable to
different seeds.. For the factor, “sumber of iterations”, there was no treatment effect (p-
value =0.769533 and F = 0.264529) at the a = 0.05 significance level.

The random number seeds were presented in Law and Kelton (1991, p.450) as
suggested by Marse and Roberts (1983). The first ten seeds from the string of seed was
utilized to perform the series of ten simulations.

The nature of simulation tends to reaffirm the mean value rather than to promote
differences in mean values when the model is relatively stable. In view of this fact, other
statistics were evaluated to determine the effect of the number of iterations on those
statistics. In particular, the standard deviation, the mode, the maximum and the minimum
values from the simulation results were analyzed. These statistics were also analyzed with
the factor, “number of iterations”, varied at 500, 1000, and 2000 iterations while again
holding the random number generator constant using the triangular distribution and the
seed values were again matched so there was no variation attibutable to different seeds.
No factor effect was found for the standard deviation (p-value = 0.994194), for the mode
(p-value = 0.356416), and for the maximum (p-value = 0.109997) at thea = 0.05
significance level. For the minimum value, a factor effect was evident for the number of
iterations (p-value = 0.0346 and F = 3.819702 with F-critical = 2.51061) at thea = 0.05

significance level.
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After determining that there was a treatment effect for “number of iterations”
when evaluated at three factor levels, additional Anova’s were conducted with only two
levels of the factor. First the number of iterations was evaluated at 1000 and 2000
iterations with the random number generator held constant using the triangular
distribution. There was no treatment effect when the minimum value was evaluated at
these two levels (1000 and 2000) (p-value = 0.612385) at thea = 0.05 significance level.

The next evaluation was conducted for 500 and 1000 iterations. There was no
treatment effect when the minimum value was evaluated at these two levels (500 and
1000) (p-value = 0.067) at thea = 005 significance level.

Next the extremes of the three iteration levels were analyzed. There was a
treatment effect for the “number of iterations” when the minimum value was evaluated for
500 and 2000 iterations (p-value = 0.023259 and F = 6.149859 with F-critical =
4.413863).

Since a factor effect was found when comparing 500 and 2000 iterations for the
minimum value, additional evaluations were conducted for the mean and the maximum at
these same levels. No treatment effect for “number of iterations™ was found for either the
mean (p-value = 0.481905) or the maximum value (p-value = 0.057335) using ana = 0.05
significance level. One reason for conducting the risk analysis simulation is to arrive at &
range of probable values. The fact that there was a treatment effect for “number of
iterations” when the minimum value was analyzed suggests that 2000 iterations is
preferred over 500 or 1000 iterations. The existence of a factor effect is due to the
simulation results which consist of an average minimum value of 170,242.6 pounds for
500 iterations (n=10) and an average minimum value of 166,976 pounds for 2000
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iterations (=10). The maximum value analysis did not result in a treatment effect for
“number of iterations” but the Anova showed only a slight difference in favor of the null
hypothesis, no treatment effect, at thea = 005 significance level with a p-value of
0.05733S. The average maximum value of 240,425.5 pounds for 500 iterations (n=10)
and the average maximum value of 244,091.2 pounds for 2000 iterations (n=10)
demonstrates the magnitude of variance at the two levels of “number of iterations™.
Performing 2000 iterations will provide a broader range of values than will simulations
conducted with only 500 or 1000 iterations.

The next set of simulations were conducted using 5000 iterations. The results
from these simulations were analyzed against the earlier simulations at 2000 iterations to
determine if these two levels of “number of iterations™ resulted in a factor effect. The
random number generator was again held constant using the triangular distribution and the
seed values were again matched so there was no variation attibutable to different seeds.
The Anova’s evaluating “number of iterations” at these two levels were conducted using
the minimum, the maximum, the mean, the standard deviation and the mode. The only
treatment effect was found for “number of iterations” when evaluating the maximum value
(p-value = 0.037238 and F = 5.059931 with F-critical = 4.413863) using ana = 0.05
significance level.

This treatment effect was significant at the @ = 005 significance level despite a
lower magnitude of difference than was seen for the maximum values at 500 and 2000
iterations.

The average maximum value of 240,425.5 pounds for 500 iterations (n=10) and

the average maximum value of 244,091.2 pounds for 2000 iterations (n=10) did not
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exhibit a significant factor effect. The average maximum value of 244,090.5 pounds for
2000 iterations (n=10) and the average maximum value of 246,751.1 pounds for 5000
iterations (n=10) did exhibit a treatment effect for “number of iterations”. The percent
change for the 500 versus 2000 iterations analysis is 1.52% while the percent change for
the 2000 versus 5000 iterations analysis is 1.09% for the maximum values. Similarly, the
percent change for the minimum values is 1.92% for the 500 versus 2000 iterations
analysis while the percent change is 0.94% for the 2000 versus 5000 iterations analysis.
Taking several factors into consideration - the lower magnitude of change in the maximum
value, the minimum value being far from a significant factor effect, no other statistic
resulting in a factor effect between 2000 and 5000 iterations, and the economy of
computer time - 2000 iterations is recommended over S000 iterations for the Monte Carlo
simulations. This decision is consistent with convergence thresholds that are used in
Monte Carlo programs such as @Risk®. Typically, the convergence threshold is set to
monitor the statistic and to check for a 1% change in the statistic at regular intervals
throughout a simulation. The minimum and maximum values are the statistics of interest
in these simulations. In the comparison of 500 and 2000 iterations, both statistics exhibit a
change greater than 1% (1.92% for the minimum and 1.52% for the maximum).
Therefore, the higher number of iterations is wamanted since the 1% threshold (or
difference) is not satisfied until the higher number is reached and the simulation has
converged to a stable state. In the latter comparison of 2000 and 5000 iterations, one
statisﬁc,theminimm.exhibitsadnngeofleu»thml%(o.u%)andtheother,the
maximum, exhibits a change of only slightly more than 1% (1.09%). Based on this slight
difference from the threshold, and the fact that one statistic is below the threshold, the
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lower number of iterations is a suitable choice. The 2000 iteration simulations show
acceptable convergence when compared to the 5000 iteration simulations.
E.1.2 Alternate Method

Morgan and Henrion (1990) offer an alternative method for determining sample
size or number of iterations for simulation procedures. They suggest running a short
simulation to determine the sample variance. With this variance, a given confidence level
(i.e. the corresponding standardized Z value), and a given number of class intervals, the
sample size can be calculated by:

m>(2cs/w)’

This technique was applied to the simulation data which was analyzed using
ANOVA above. For example, the mean empty weight for 500 iterations, the sample
variance was 230,699.4 and this calculation resulted in 8362 as the appropriate number of
interations. The following table, E-1, summarizes the results of this technique using 95%
confidence (Z=1.96) and 20 class intervals:

Table E-1 Summary of Alternate Method Calculations
# of iterations sample variance | sample std. dev. m> (Zale’
500 230,699.4 480.31 8862
1000 146,920.4 383.302 5644
2000 60,594.59 246.16 2327
5000 45,352.73 212.96 1742

Based on these results, this technique did not seem well-suited for selecting an
economical and efficient simulation length based on s very limited simulation (e.g. the
variance for S00 iterations). Longer simulations with reduced variance did appear to
result in a more reasonable number of iterations. In particular, the m > 2327 and the m >
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1742 appeared to be consistent with the ANOVA results that suggest that 2000 iterations
was an appropriate number of iterations. The m > 1742 for the 5000 iteration sample
variance appeared to confirm that 5000 iterations were unnecessary. Based on the m >
2327, the number of iterations might be set at 2500 rather than the 2000 that were
suggested based on the ANOVA results.
E.1.3 Random Number Generator

Following the conclusion of the simulations and the Anova’s utilizing the triangular
distribution random number generator (RNG), another series of simulations were
conducted utilizing a gaussian (or Normal distribution) RNG. The mean value was
evaluated to determine if there was a factor effect for the “RNG” factor. Both RNGs,
triangular and gaussian, were used to execute simulations for 2000 iterations using
identical seeds again to control for variation due to seed values. For equal sample sizes
(n=15), there was a treatment effect for RNG when evaluating the mean value with a p-
value of 0.000000327 (F = 46.1771 with F-critical = 4.2252).

This treatment effect was as hypothesized (i.e. there will be a treatment effect for
RNG) and was as expected since the triangular distribution incorporates skewness rather
than symmetry. The triangular distribution was incorporated in the methodology to allow
for skewness and to avoid the assumption of normality that is 30 often invoked. This
Anova result served as a statistically significant argument against assuming a normal
distribution for the simulations described in this research and provided a waming for other
simulation problems as well.
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E.1.4 Simulation Follow-up

After 2000 iterations had been selected as the optimal simulation length, a
discussion with an outside reviewer led to the advice “Don’t skimp on the number of
iterations in your simulation™ (Wilder 1996). Heeding this advice, a series of follow-up
simulations were conducted using 20,000 iterations. Several Anova’s were executed to
analyze the results of these longer simulations.

The first Anova was a repeat of the preceding analysis. The RNG factor was
evaluated using the mean value. Both RNGs, triangular and gaussian, were used to
execute simulations for 20,000 iterations using identical seeds again to control for
variation due to seed values. For equal sample sizes (n=6), there was a factor effect for
RNG when evaluating the mean value with a p-value=0.00000351 (F = 126.4738 with F-
critical = 5.317645). This effect is similar to the treatment effect that was determined for
2000 iterations. There is some erosion in the difference between the means as evidenced
by the change in the p-value (by a factor of 10) but there is ample evidence against the null
hypothesis (Ho: /0 = s2) at thea = 0.05 significance level.

Next, the two RNGs were evaluated separately to check for a treatment effect for
number of iterations between 2000 and 20,000. For the gaussian RNG, no treatment
effect was detected for “number of iterations” when evaluating the mean value (p-value =
0.216087, F = 1.743753 and F-critical = 4.964591) at thea = 0.05 significance level. For
the triangular RNG, no treatment effect was detected for “number of iterations” when
evaluating the mean value (p-value = 0.06566, F = 4.270713 and F-critical = 4.964591) at

the a = 005 significance level.
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From these analyses, the choice of including the triangular distribution in the
methodology was reaffirmed. The follow-up analyses for the “number of iterations”
exhibited no treatment effect between the different levels of 2,000 and 20,000. This
confirmed the choice and recommendation of 2000 as an acceptable number of iterations
for this simulation procedure. Summary tables of the ANOVA analyses are presented in

the following tables - E-2 and E-3.

Table E-2_Evaluation of # of iterations for Trissguiar RNG Simulation —
Filename Parameter | Factor levels analyzed p-vaine ata =05
nasaaovl Mean 300, 1000, 2000 iterations 0.769533 not significant
nasaaov2 Std. Dev. 500, 1000, 2000 iterations. 0.994194 not significant
nasaaov3 Mode 300, 1000, 2000 iterations 0.356416 not signifcant
nasaaov4 Maximum 300, 1000, 2000 iterations 0.109997 not significant
nasaaovs Minimum 500, 1000, 2000 iterations 0.0346 ¢ _significant
nasaaové Minimum 1000_and 2000 iterations 0.612385 not significant ‘
nasaaov7 Minimum 500 and 1000 iterations 0.067 not significant
nasaaov8 Minimum 500_and 2000 iterations 0.023259 ¢ _significant
nasaaov9d Mean 500_and 2000 iterations 0.481905 not significant
nasaov2a Variance 500, 1000, 2000 iterations 0.988852 not significant ‘
1Nasaaovv Minimum 500 _and 2000 0.023 ¢ _significant
nasasaovx Maximum 300 _and 2000 0.057 not significant
nasaovmx Maximum 2000 snd 3000 0.037 ¢ significant
nasaovmn Minimum 2000_and 5000 0.1623 not significant
nasaovme Mean 2000 and 5000 0.553588 not significant
nasaovsd Std. Dev. 2000 snd 5000 0.899463 not significant
nasaovind Mode 2000 and 5000 0.825861 not significant

Table E-3 Evaluation of Triangular va. Ganssisa Random Number Generator

and Evaluation of 2000 vs. 20 iterations
Parameter anslyzed Factor levels anslyzed p-value ata =05

Mean at 2000 iterations Triang. vs. Gaussian RNG | 0.000000327 _ | significant ¢
Mean at 20,000 iterations Triang. vs. Gaussian RNG | 0.00000351 significant **
Mean for Gaussian RNG 2000 vs. 20,000 iterations | 0.216087 not significant **¢

[ Mean for Triangular RNG 2000 vs. 20,000 iterations_| 0.06566 not significant_****
. F statistic = 46.1771 and F-critical = 4.2252 (a=15).

¢ F statistic= 126.4738 and F-critical = 5.31764S (2=6).

ses  F satistic = 1.743753 and F-critical = 4.964591 (2=6).

sess  F satistic = 4.270713 and F-critical = 4.964591 (n=6).

E.3 Data Interpretation
Once data was obtained through the expert judgment methodology, there remained
another element of subjectivity as to how that data was used. Law and Kelton (1991)
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discussed several options for selecting a probability distribution in the absence of data (p.
403). They suggested one approach was to “obtain subjective estimates of a and 5,” by
asking ‘experts’ for “their most optimistic and pessimistic estimates” (Law and Keiton
1991, p. 403). They also discussed the “triangular approach™ which required a “subjective
estimate of the most likely” value in question (Law and Kelton 1991, p. 403). An
alternative approach was to fit a beta distribution between the subjectively assessed
minimum and maximum, a and 5. This allowed the specification of a wide variety of
distribution shapes but specifying the parameters for the beta again are subjective. One
simplistic approach was to specify the parameters as alphal = alpha2 = 1, which converts
the beta to a uniform distribution (ie. assumes that X is equally likely to take on any value
between a and b) (Law and Kelton 1991, p. 404). Other shape parameter values were
used to specify skewness and Keefer and Bodily (1983) offer alternate methods for
“specifying the parameters of a beta distribution” (Law and Kelton 1991, p. 404).

E.3.1 Triangular Distribution '

Law and Kelton (1991) demonstrated that choosing the wrong distribution can
significantly affect the accuracy of a model’s results (p. 326). They also suggested that
the triangular distribution was appropriste for situstions where a “rough model in the
absence of data” (p. 341) was needed. They asserted that a theoretical distribution was
preferred over an empirical distribution since extreme values are unlikely to be sampled
from an empirical distribution (i.e. only what has occurred historically will be sampled with
a high frequency) (Law and Kelton 1991, p.327). Another drawback of an empirical
distribution function was that there may be “certain ‘irregularities’, particularly if only a
small number of data values is available” (Law and Kelton 1991, p.327). The triangular
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distribution was incorporated in the proposed methodology due to the lack of data and

because a rough model that was simple to utilize and apply was required. The triangular
distribution also afforded the ability to include skewness and avoided s potential central
E.3.2 Simulation Inputs

The literature search revealed examples of researchers using different probability
distributions based correctly or incorrectly on certain assumptions. Black and Wilder
(1980) used the Beta distribution which required the specification of the four moments of
the Beta distribution - the mean, the standard deviation, the skewness and the kurtosis.
This was particularly important to specify skewness (either left or right) and to specify the
degree of "peakedness” (kurtosis). Despite their use of the Beta distribution, Black and
Wilder (1980) admitted that similar results were obtained using the Triangular distribution
for their data.

Of particular interest, the elicitation procedure was designed to avoid the typical
elicitation of probabilities, choice preferences or utility functions. At the recent annual
INFORMS conference in Atlanta, November 1996, a presenter (Wolfson 1996) stated that
a decision analyst should never attempt to elicit anything more than the first two moments
of a probability distribution (i.e. the mean and standard deviation). From the audience,
Ward Edwards (see Edwards 1954; Edwards 1961; Edwards 1992) voiced his
wholehearted agreement. Note that the moments are not a probability but statistics that

estimate population parameters of a probability distribution.
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E.3.3 Statistical Distributions Goodness-of-Fit

Since inputs to the Monte Carlo simulation were specified as probability
distributions, a statistical goodness-of-fit test was used to verify that proper distributions
were utilized. A suitable goodness-of-fit test was the Kolmogorov-Smirnov test.

The Kolmogorov-Smimov Goodness-of-Fit test evaluates the hypothesis that
“sample data was drawn from a specified continuous distribution F. The test is
nonparametric and exact for all sample sizes”(Fishman 1973) unlike the Chi-square test
which is not robust for small sample sizes and assumes normality. The test compares the
cumulative frequency distribution (usually the observed CDF but the simulated data CDF
in this case) for the sample to that expected for the population specified by the null
hypothesis (Lapin 1982). That is, the null hypothesis proposes the CDF that is expected

~ to fit the data. The Kolmogorov-Smirnov test statistic is the maximum deviation between
the observed and the expected distributions (Lapin 1982). The results of the
Kolmogorov-Smirnov goodness-of-fit tests for input data will indicate that input data fit a
particular statistical distribution. Seeking a theoretical probability distribution that best fits
the data is recommended for all situations by Hillier and Lieberman (1986) to avoid
“reproducing the idiosyncrasies of a certain period in the past” if historical data is used.

Kolmogorov-Smimov tests were conducted for input data (2000 iterations or 2000
data points) utilizing BestFit* personal computer software. The results of the Goodness-
of-Fit tests for input data indicated that all input data fit the triangular distribution better
than any of twenty-four other statistical distributions evaluated (Normal and Beta were
typically second and third best).
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The triangular distribution is specified by either the PDF or CDF. These are
expressed as follows. The density or PDF is:

2"’%_4)(0-“) if asxs<b

z(c-x)/(c-a)(c-b) if b<xsc

where a= minimum, b= most likely, and c=maximum.
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Goodness-of-Fit Example Results
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Goodness-of-Fit test for Basic structure “cbdy” parameter.

Minimum= 18
Maximum= 22
Mode= 20
Mean= 2.12

Std Deviation= 0.110755
Variance= 0.012267
Skewness= 0.989258
Kurtosis= 2.954631

137

Input Settings:

Typeof Fit:  Full Optimization

Tests Ron: Chi-Square K-S Test

Best Fit Results

Function Chi-Square  Rank K-S Test Rank
Weibull(26.91,2.16) 0.974884 1.0 0.150305 20
Normal(2.12,0.11) 2.211942 20 0.208376 30
Lognorm(2.12,0.11) 2.798333 3.0 0.211234 40
Beta(1.35,0.69) + 1.80 233366524 4.0 0.784877 5.0
Triang(1.80,2.00,2.20) 1.0c+34 50 0.025 1.0
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Goodness-of-Fit test for Wing - tail equation coefficient parameter.

Minimum== 4.5

Maximums= 55

Mode= 50

Mean= 5.316667

Std Deviation= 0.25766
Variance= 0.066389
Skewness= 0.915328
Kurtosis= 2.609145

Input Settings:

Type of Fit: Full Optimization
Tests Run: Chi-Square K-S Test

Best Fit Results

Function Chi-Square Rank K-S Test Rank
Weibull(28.78,5.40) 0.397563 1.0 0.156864 3.0
Normal(5.32,0.26) 0.722805 20 0.209251 4.0

| Lognorm(5.32,0.26) 0.918183 30 0.211788 5.0
Rayleigh(3.76) 29.785073 4.0 0.510664 7.0
Chisq(6.00) 33.659136 5.0 0475774 6.0
Beta(1.21,0.76) + 4.50 221.080789 6.0 0.094089 2.0
Triang(4.50,5.00,5.50) 1.0e+34 7.0 0.0125 1.0
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Goodness-of-Fit test for Empty Weight Simulation Results.

Minimom= 1.648926¢+5
Maximum= 2.455585¢+5
Mode= 2.011923¢+S

Mean= 1.999114¢e+5

Std Deviation= 1.205242¢c+4
Variance= 1.452607¢c+8
Skewness= 0.254714
Kurtosis= 2.924987

Input Settings:

Type of Fit: Full Optimization

139

Tests Run: Chi-Square K-S Test

Best Fit Results

Function Chi-Square Rank K-S Test Rank

PearsonV(2.78¢+2,5.53¢+7) 17.86695 1.0 0.011031 1.0

PearsonVI(7.70¢+4,2.79¢+2,7.22¢+2)  17.971984 20 0.01118S 20

Lognorm(2.00e+5,1.20e+4) 20.498594 3.0 0.011603 30

Normal(2.00e+5,1.21e+4) 40.520243 40 0.023952
5.0

Triang(1.65¢+5,1.96e+5,2.46¢+5) 352.521746 5.0 0.121918
6.0

Beta(4.34,5.66) ® 8.07¢+4 + 1.65¢+S 646.304251 6.0 0.017197 4.0
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Appendix G

Follow-up Questionnaire for Multiple Experts
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Expert Data Methodology for Risk Analysis of Weight Estimates for s Launch Vehicle

Introduction

Uncertainty is significant at conceptual design. Conceptual design engineering attempts to work
from the abstract to the concrete. The amount of uncertain information is significant when
attempting to bridge the gap from the abstract concept to a concrete physical design, especially for
complex systems.

Purpose of this study

Weight estimating is a major concem in conceptual design. Weight estimating is used to make
management decisions in choosing among alternative designs (¢.g. lower weight may mean lower
life cycle cost). Weight estimates are also important factors used for estimating cost. Typically,
weight estimating relationships (WERs) developed and scaled from historical data of aircraft (or
previous launch vehicles) are used to estimate weight of the various subsystems of a launch vehicle
at the conceptual design phase. Since there is little historical data, the WERSs are highly uncertain.
Weight uncertainty may lead to increased scquisition cost, schedule overruns, performance
deterioration, and increased operating costs. These potential effects make it necessary to address
uncertainty and consider the life cycle consequences at conceptual design.

Expert Questionnsire

This study develops a methodology to obtain expert judgment data for quantifying WER parameter
ranges including uncertainty. Based on the detailed information required to quantify WER
parameter ranges including uncertainty, a questionnaire was developed as a practical and efficient
approach for eliciting the expert’s opinion. The questionnaire has evolved through several
iterations with ample feedback from one NASA expert as to the usefulness of each clement
included in the questionnaire. The latest iteration of the questionnaire consists of:

i.) Select the Parameters from WERs that will be evaluated for uncertainty.

ii.) Rate the parameter for uncertainty on a five point qualitative scale (Low, 2, Mod., 4, or High).
iii.) Document the reason(s) for the uncertainty for each parameter that is rated.

iv.) The expert is prompted to think of any additional cues that may further document the thinking
process that affects the uncertainty rating.

v.) The expert is asked to anchor the three major points along the five point scale quantitatively.
This documents the meaning of Low, Moderate and High uncertainty from the expest’s perspective.
These quantitative assessments are ultimately used as an estimate of the standard deviation for the
statistical distribution.

vi.) Provide parameter values at three levels - Minimum, Most Likely and Maximum (the
uncertainty rating and the quantitative anchor of uncertainty are used to aid this process).

vii.) Describe any scenario that would change a subsystem/parameter rating and also provide the
changes that would result if that scenario occurred.

The following pages contain Weight Estimating Relationships (WERs) for various subsystems for
a launch vehicle. The vehicle in question is one of the proposed designs for replacing the current
space shuttle [specifically - single-stage vehicle, rd-701, borz. 30 f. p/l bay, 25 kib p/1 - 51.6 inc.).
This vehicle is being evaluated at the conceptual design phase.
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Ingtructions for G Questionnsi
Based on your membership in SAWE, you have beea selected as a knowledgable individual in
this subject matter. You are ssked to assume the role of conceptual design engineer. Your
task is to evaluate the uncertainty of the design parsmeters that are used in the Weight
Estimating Relstionships (WERs). Your participation will serve to verify and validate the
first two steps (or more) in the expert elicitstion procedure.

The questiounsire cousists of 2 phases.

Phase I

You will be provided with the parameters, the uncertsinty ratings and the reasous for those
ratings as identified by the NASA LaRC conceptual design engineer. You are given this
information to familiarize yourself with the methodology and the types of ratings and reasons
that identify the level of uncertainty.

Phase II

You will be asked to provide uncertainty ratings. More instructions will be given st that
point in the questionnaire.

The primary purpose of this questionnaire is to provide e validation technigue to satisfy
research requirements associated with the completion of my doctoral dissertation. Your

paﬁcipaﬁuﬁllugmlym

I ask your permission to include some information about you and your qualifications in the
appendix or body of my dissertation. Your name, your employer and all other information
will be protected and will not be published in any other journal or conference paper without
your permission.

Please call me or send an E-mail if you have questions about the questionnaire
at any time. Thank you for your participation.
Richard Monroe

Home phone: (757) 622-6240 Work: (757) 683-4161
e-mail: odu.edu
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Nomenciature

‘a’ geometry parameter

‘c’ constant parameter

v geometry parameter

‘s’ calculated parameter

const constant

eq.coef. equation coefficient

ssv single stage vehicle

reduction factor weight reduction % from reference data point (shuttle, etc.)

(shuttle) current shuttle subsystem is used as reference data point

(marshall study) source of data or reason for data is listed in parentheses,
e.g. marshall, shuttle, composites, etc.

Gr/Ep Graphite/Epoxy

Al-Li Aluminum lithium

. multiply variables (as listed in WER statements)

** the term following is an exponent (in WER statements)

Follow other mathematical operations as normally executed.
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PHASE I
You are provided with the WER parameters, the uncertainty ratings and the reasous that were
assessed by the NASA LaRC eagincer. The following 3 pages are examples.

READ THE FOLLOWING EXAMPLE WER ASSESSMENTS TO GAIN AN UNDERSTANDING OF
HOW THE METHODOLOGY IS USED and te see TYPICAL EXAMPLE RESULTS.

|[EXAMPLE )|
WING subsystem
Select the WER parameters from the following list that you want to evaluate for uncertainty.
(expwing) parameters

¢ 1 1.0 constant

¢ el 82954 equsation coefficient

¢ 2’ 001 divide load by 1000

¢ ‘usf’ 1.75 ultimate safety factor

¢ ‘of 20 load factor

s ‘wland’ landed wt

‘a’ ‘exp’ 3360. exposed wing area

¢’ ‘ar 148 aspect ratio based on exposed area

¢’ wr 34 taper ratio ct/cr

¢ toc’ .10 thickness to chord ratio

¢’ ‘el’ 48 exponent

¢ ‘2’ 67 expooent

¢ ‘e3' .64 expounent

¢’ ‘o4’ 40 exponent

¢’ ‘rew’ 40 reduction factor (lo2-1h2 ssv, ezedesit, Gr/Ep)
Given WER:

c1*(c2*usf*nf*wiand)**el* te2%arete3*((1+tr *%ed*(1-rew)

1. Choose to select parameters from the above WER and rate them for uncertainty.
From the WING (expwiag) WER parameters you have sclected:

| c eq. coef. 0.82954 |

The NASA LaRC engi ided the ing reason for the i i

“For conceptual design, WERs for wings are typically more accurate than for other compouents.”

The following cues were also listed by the NASA LaRC engineer:
“1. WER is based on a regression of historical data points.
2. Fit to data is good.
3. Data points are spplicable to vehicle type.”

“Size of applicable data set. Basis of weight (actual, calculated, estimated).”
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INSTRUCTIONS FOR QUESTIONNAIRE [Phase II]

1. Rate WER parameter uncertainty QUALITATIVELY from Low, Moderate to High
uncertainty. Focus oanly on those WER parameters that you feel should be evaluated in this
manner.

2. Simultaneous with your UNCERTAINTY rating provide a REASON for your rating.

3. Anchor your QUALITATIVE description of uncertainty to 8 QUANTITATIVE measure
on the S-point scale provided.

Steps 4_and S are not required in this evaluation.
4. Provide 3 point estimstes [Low, Mode or Most Likely, and High] for each of the MOST
UNCERTAIN WER parameters identified in the preceding steps. {nof shown kere}

5. Describe any scenarios that may change WER PARAMETER values. Provide the
alternative WER PARAMETER values that in your judgment would be appropriste for the
scenario. {not shown kere}

Uncertainty bere has been defined (or interpreted) as the total amount of variance for s
design parameter from an initial design point estimate. In other words, given the nature of
the WER parameters and what they represent, what is the potential range of a specific
parameter value (assuming the varisble is continuous). Specify the range in terms of a total
percentage (i.e. total variation or total uncertainty). For example, the quantity of 20%
would represent a total variation of -10% to +10% around the point estimate.

Keep this definition in mind as you sttempt to rate esch of the WER parameters.
Ultimately, your rating would be used to calculate an upper bound and a lower bound
around the point estimate or most likely value.

The rating choices are LOW, 2, MODERATE, 4, HIGH and None.

Choose Low, Moderate or High based on the level of Uncertainty that you feel applies to that
particular subsystem WER.

Choose 2 if Uncertainty is more than Low but less than Moderate.

Choose 4 if Uncertainty is more than Moderste but less than High.

Choose NONE if the WER is coastant or 100% certain.

One of three possible actions are requested of you for each WER for the listed subsystems:
1. Select sppropriate parameters to rate for uncertainty and perform the rating.
2. Reply that you do not feel comfortable making an uncertsinty rating because
you do not have sufficient information to make a judgment.
3. Develop your own WER model using parameters that you think are appropriate
for a given subsystem then select parameters and rate their uncertainty.

On the following pages parameters are provided that were selected by the NASA LaRC engineer.
Selection does not automatically assume HIGH UNCERTAINTY. Any uncertainty rating can be
applied to the selected parameters for a given WER
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Propulsion, main
Press and feed .
Select the WER parameter from the following list that you want 10 cvaluate for uncertainty.

Given WER:
tox* *pwr)y/dbaik® ]

‘press’ parameters

¢ 1 comst

e’ ‘cpf’ 4“4 pres. sad feed const, based ou vol. flow rate
(Marshall study)

¢ ‘dbulk’ 62.6 propellast bulk density, o/f=

' ‘ispsl’ 4522 ses level isp (sec)

¢’ ‘pwr’ 1.0 power level

<’ ‘tvac’ 2054000. vacuum thrust (Ib)

' ‘tow’ 1.3 ift-off t/w

‘¢’ ‘adpay’ [ 8 additional down p/d capability

g lm' gross "

' 'reag’ 0.0 reduction factor

From the press WER parameters you have selected:
[ ¢ cpf 444  pres. and feed const, based on vol. flow rate ]

Rate the degree of uncertainty that you associate with this parameter:

Low 2 Moderate 4 High

3

: a reason for

2. 1choose not to rate this WER due te lack of information.

3. 1choose to develop my own WER and select and rate parameters from that sew WER.
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Propellant tanks
Given WER:
ctnk*((1 - e**(c*delv: *insertn + omsres) * (1 - romstak ]
1. Choose parameters sad rate for uncertainty.
‘omstaks’
¢’ 1 1.0 counst
e’ ”e’ 1.0
‘e’ ‘ctuk’ A37 low pressure tank coust (Ib/Ib), o/f=6
'« e 2.71828 valse of ¢
' ‘isp’ 462.2 vac. specific impulse (sec)
¢’ ‘delv’ 1350. delta v req. 1350 fit/sec, due east reg.
¢’ ‘g’ 32.174 gravity const
s ‘inserta’ insertion wt
s ‘omsres’ oms reserve propellast
' ‘romstak’ 0. reduction factor

From the omstnks WER parameters you have selected:

[ ¢ ctok 037 low pressure tank const (Io/Ib), o/f=6 )

wammmmmmm
Low 2 Moderate 4 High

al: ide a reason for

2. I choose not to rate this WER due to lack of information.

3. Ichoose to develop my own WER aad sclect and rase parameters from that sew WER.
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Avionic cabling
Given WER:
{_wac*(1-rcab) + winst*rinst |
1. Choose parameters and rate for uncertaisty.
‘aveable’ parameters
¢ 1 L0 const
¢ ‘wac’ 256S. aviounic cable wt. (shuttie)
'’ ‘winst' S64. supports and instalition wt. (shuttie)
¢’ ‘reab’ 30 reduction factor (fiber optics)
e’ ‘rinst’ .20 reduction factor
From the avcable WER parameters you have selected:
[ wac 2565. _avionic cable wt. (shurtle) ]

Low 2 Moderate. 4 High

a reason for

2. 1choose not to rate this WER due to lack of information.

3. 1chooee to develop my own WER and select and rate parameters from that sew WER.
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Wire trays

Given WER:

[rtrayst(i-viray) ]

1. Choose parameters and rate for uncertainty.

‘tray' parameters

'’ 17 .0 const

' ‘wirays' 9. wire trays wt. (shuttic)

¢’ 'rtray’ 20 reduction factor (composites)

From the tray WER parameters you have selected:

[ c wirays 592.  wire trays wt. (shuttle) |

Rate the of inty that you associate with this 2
Low 2 Moderate 4 High

s ide a reason for

From the tray WER parameters you have selected:

[ c riray 20 reduction factor (composites) ]

Rate the of inty that you associate with this .
Low 2 Moderate 4 High

. ide a reason for

2. 1 choose not to rate this WER due ¢0 lack of information.

3. I choose to develop my ewa WER snd sclect and rate parameters from that sew WER.
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Main gear
Running gear .
Select the WER parameter from the following list that you want t0 evaluate for uncertainty.
‘magrg’ parameters
'c’ 1 10 coust
¢’ ‘el’ 401 comst
‘'c' ‘cmry’ 173 russing gear const. (main)
¢’ 14 14 esponent
'’ ‘sw’ t 8 sumber of main wheels, total
'c’ .78 I8 exponent
‘s’ ‘wiand’ landed wt
' ‘ig’ e reduction facter
Given WER:
c1*cmrg*wisnd*®.75*awee.144(1-rig) ]

1. Choose parameters asnd rate for uncertainty.
From the mngrg WER parameters you have sclected:
[ omg 173, running gr const. (main) ]
Rate the degree of uncertainty that you associate with this parameter:

2. I choose not to rate this WER due to lack of informsation.

3. 1choose to develop my own WER aad select and rate parameters from that new WER.
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Follow-up Questions X
L Easse of use and/ar vecfulness of methodology and questionnsire.

1. Conxnent on the ease of use of the methodology.
2. Do you find the methodology t0 be uscful for a weight estimation snalysis?
3. Would you prefer to use your own models (WERs or MERs)?

4. Would you find the methodology wseful if adepted (0 your own snalysis  problem with your own
models?

L .
1. Did you ind the original expert’s example judgments 0 be reasonable and understandable?

2. Docs this interpretation of uncertainty (as total wriation) seem logical 1o you?
3. Do you have any other suggestion of how 1 internret wncertainty?
4. Do you have any other method or any suggestion of how to judge uncertainty?

Benchmark Oucsticns

1. Given that a WER parameter value is based on a regression of historical data and the regression line has a good
fitto the data:

What is your uncertainty rating for such a perameter?
Rate the degree of uncertainty that you associste with this perameter:

Low 2 Moderate4 High :
2. Given that s WER parameter value is based on someone else’s analysis or experiment (for example a study at
Marshall Space Flight Center or at Jobnson Space Center, etc.):
What is your uncertainty rating for such a parameter? Explain your assumptions about the data source if
that is an important consideration to you.

Low 2 Moderated High
Explanation (if required)
3. Given that s WER parameter is a reduction factor that has becn validated using actual structures or by some
other analytical techniques:

What is your uncertainty rating for such & parsmneter?

Low 2 Moderstc4 High
4. Given that s WER parameter is based on & known design (such as the current space shuttle) and the new
structure is assumed to be similar:

What is your uncertainty rating for such a parameter?

Low 2 Moderste4 High
S. Given that the subsystem structuge being analyzed is not well-defined (i.e. very early in the conceptual design
phase) and the WER parameter is estimated:

What is your uncertainty rating for such a perameter?

Low 2 Moderste4 High
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{for STEP 3 above}

Uncertainty here has beea defined (or interpreted) as the total amount of variance for a
design parameter from aa initial design point estimste. In other words, given the nature of
the WER parameters and what they represest, what is the potential range of a specific
parameter value (assuming the varisble is continucus). Specify the range in terms of a total
percentage (i.e. total varistion or total uncertainty). For example, the quantity of 20%
would represesat a total varistion of -10% to +10% around the point estimate.

Keep this definition in mind as you attempt to rate each of the WER parameters.
Ultimstely, your rating would be used to calculate an upper bound and a lower bound
around the point estimate or most likely value.

Provide a Quantitative explanation of your understanding of Low, Moderate and High
uncertainty. CIRCLE ONE NUMERICAL CHOICE FOR EACH.

The amount of uncertainty or varistion thst I associate with L ow Uncertginty is:

Less 5% 15% 10% 15% 20% More
The amount of uncertainty or varistion that I associate with High Uncertainty is:
Less 15% 20% 0% 40% 50% More

The amount of uncertainty or varistion that I associate with Moderate Uncertainty is:
Less 10% 15% 20% 25% 30% More

For ratings of 2 or 4 on the Qualitative rating sheet:
the midpoint betweea Low and Moderate will be used for a 2 rating
the midpoint betweea Moderate and High will be used for a 4 rating
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